
verticapy.vDataFrame.cov¶
- vDataFrame.cov(columns: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, focus: str | None = None, show: bool = True, chart: PlottingBase | TableSample | Axes | mFigure | Highchart | Highstock | Figure | None = None, **style_kwargs) PlottingBase | TableSample | Axes | mFigure | Highchart | Highstock | Figure ¶
Computes the covariance matrix of the vDataFrame. This matrix summarizes the covariances between pairs of variables in the dataset, shedding light on how variables move in relation to each other. It’s an important tool in understanding the relationships and interactions between variables, which can be used for various statistical analyses and modeling tasks.
Parameters¶
- columns: SQLColumns, optional
List of the vDataColumns names. If empty, all numerical vDataColumns are used.
- focus: str, optional
Focus the computation on one vDataColumn.
- show: bool, optional
If set to True, the Plotting object is returned.
- chart: PlottingObject, optional
The chart object used to plot.
- **style_kwargs
Any optional parameter to pass to the plotting functions.
Returns¶
- obj
Plotting Object.
Examples¶
Import VerticaPy.
import verticapy as vp
Import numpy to create a random dataset.
import numpy as np
Generate a dataset using the following data.
N = 30 # Number of records data = vp.vDataFrame( { "score1": np.random.normal(5, 1, N), "score2": np.random.normal(8, 1.5, N), "score3": np.random.normal(10, 2, N), "score4": np.random.normal(14, 3, N), } )
Draw the covariance matrix.
data.cov()
You can also use the parameter focus to only compute a covariance vector.
data.cov(method = "pearson", focus = "score1")