Loading...

verticapy.machine_learning.vertica.ensemble.XGBClassifier.predict

XGBClassifier.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, cutoff: Annotated[int | float | Decimal, 'Python Numbers'] | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and “SELECT 1” are invalid.

X: SQLColumns, optional

List of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added vDataColumn. If empty, a name is generated.

cutoff: PythonNumber, optional

Cutoff for which the tested category is accepted as a prediction. This parameter is only used for binary classification.

inplace: bool, optional

If set to True, the prediction is added to the vDataFrame.

Returns

vDataFrame

the input object.

Examples

For this example, we will use the Iris dataset.

import verticapy.datasets as vpd

data = vpd.load_iris()

train, test = data.train_test_split(test_size = 0.2)
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
13.34.55.67.8Iris-setosa
23.34.55.67.8Iris-setosa
33.34.55.67.8Iris-setosa
43.34.55.67.8Iris-setosa
53.34.55.67.8Iris-setosa
63.34.55.67.8Iris-setosa
73.34.55.67.8Iris-setosa
83.34.55.67.8Iris-setosa
93.34.55.67.8Iris-setosa
103.34.55.67.8Iris-setosa
113.34.55.67.8Iris-setosa
123.34.55.67.8Iris-setosa
133.34.55.67.8Iris-setosa
143.34.55.67.8Iris-setosa
153.34.55.67.8Iris-setosa
163.34.55.67.8Iris-setosa
173.34.55.67.8Iris-setosa
183.34.55.67.8Iris-setosa
193.34.55.67.8Iris-setosa
203.34.55.67.8Iris-setosa
213.34.55.67.8Iris-setosa
223.34.55.67.8Iris-setosa
233.34.55.67.8Iris-setosa
243.34.55.67.8Iris-setosa
253.34.55.67.8Iris-setosa
263.34.55.67.8Iris-setosa
274.33.01.10.1Iris-setosa
284.34.79.61.8Iris-virginica
294.34.79.61.8Iris-virginica
304.34.79.61.8Iris-virginica
314.34.79.61.8Iris-virginica
324.34.79.61.8Iris-virginica
334.34.79.61.8Iris-virginica
344.34.79.61.8Iris-virginica
354.34.79.61.8Iris-virginica
364.34.79.61.8Iris-virginica
374.34.79.61.8Iris-virginica
384.34.79.61.8Iris-virginica
394.34.79.61.8Iris-virginica
404.34.79.61.8Iris-virginica
414.34.79.61.8Iris-virginica
424.34.79.61.8Iris-virginica
434.34.79.61.8Iris-virginica
444.34.79.61.8Iris-virginica
454.34.79.61.8Iris-virginica
464.34.79.61.8Iris-virginica
474.34.79.61.8Iris-virginica
484.34.79.61.8Iris-virginica
494.34.79.61.8Iris-virginica
504.34.79.61.8Iris-virginica
514.34.79.61.8Iris-virginica
524.34.79.61.8Iris-virginica
534.34.79.61.8Iris-virginica
544.42.91.40.2Iris-setosa
554.43.01.30.2Iris-setosa
564.43.21.30.2Iris-setosa
574.52.31.30.3Iris-setosa
584.63.11.50.2Iris-setosa
594.63.21.40.2Iris-setosa
604.63.41.40.3Iris-setosa
614.63.61.00.2Iris-setosa
624.73.21.30.2Iris-setosa
634.73.21.60.2Iris-setosa
644.83.01.40.1Iris-setosa
654.83.01.40.3Iris-setosa
664.83.11.60.2Iris-setosa
674.83.41.60.2Iris-setosa
684.83.41.90.2Iris-setosa
694.92.43.31.0Iris-versicolor
704.92.54.51.7Iris-virginica
714.93.01.40.2Iris-setosa
724.93.11.50.1Iris-setosa
734.93.11.50.1Iris-setosa
744.93.11.50.1Iris-setosa
755.02.03.51.0Iris-versicolor
765.02.33.31.0Iris-versicolor
775.03.01.60.2Iris-setosa
785.03.21.20.2Iris-setosa
795.03.31.40.2Iris-setosa
805.03.41.50.2Iris-setosa
815.03.41.60.4Iris-setosa
825.03.51.30.3Iris-setosa
835.03.51.60.6Iris-setosa
845.03.61.40.2Iris-setosa
855.12.53.01.1Iris-versicolor
865.13.31.70.5Iris-setosa
875.13.41.50.2Iris-setosa
885.13.51.40.2Iris-setosa
895.13.51.40.3Iris-setosa
905.13.71.50.4Iris-setosa
915.13.81.50.3Iris-setosa
925.13.81.60.2Iris-setosa
935.13.81.90.4Iris-setosa
945.22.73.91.4Iris-versicolor
955.23.41.40.2Iris-setosa
965.23.51.50.2Iris-setosa
975.24.11.50.1Iris-setosa
985.33.71.50.2Iris-setosa
995.43.04.51.5Iris-versicolor
1005.43.41.50.4Iris-setosa
Rows: 1-100 | Columns: 5

Let’s import the model:

from verticapy.machine_learning.vertica import NearestCentroid

Then we can create the model:

model = NearestCentroid(p = 2)

We can now fit the model:

model.fit(
    train,
    [
        "SepalLengthCm",
        "SepalWidthCm",
        "PetalLengthCm",
        "PetalWidthCm",
    ],
    "Species",
    test,
)

We can then get the prediction:

model.predict(test, name = "prediction"
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
Abc
prediction
Varchar(15)
13.34.55.67.8Iris-setosaIris-setosa
23.34.55.67.8Iris-setosaIris-setosa
33.34.55.67.8Iris-setosaIris-setosa
43.34.55.67.8Iris-setosaIris-setosa
53.34.55.67.8Iris-setosaIris-setosa
63.34.55.67.8Iris-setosaIris-setosa
74.34.79.61.8Iris-virginicaIris-virginica
84.34.79.61.8Iris-virginicaIris-virginica
94.34.79.61.8Iris-virginicaIris-virginica
104.34.79.61.8Iris-virginicaIris-virginica
114.34.79.61.8Iris-virginicaIris-virginica
124.52.31.30.3Iris-setosaIris-versicolor
134.63.11.50.2Iris-setosaIris-versicolor
144.92.43.31.0Iris-versicolorIris-versicolor
155.02.33.31.0Iris-versicolorIris-versicolor
165.03.41.50.2Iris-setosaIris-versicolor
175.03.51.30.3Iris-setosaIris-versicolor
185.03.61.40.2Iris-setosaIris-versicolor
195.13.41.50.2Iris-setosaIris-versicolor
205.13.81.60.2Iris-setosaIris-versicolor
215.13.81.90.4Iris-setosaIris-versicolor
225.24.11.50.1Iris-setosaIris-versicolor
235.53.51.30.2Iris-setosaIris-versicolor
245.54.21.40.2Iris-setosaIris-versicolor
255.62.53.91.1Iris-versicolorIris-versicolor
265.62.84.92.0Iris-virginicaIris-versicolor
275.72.84.51.3Iris-versicolorIris-versicolor
285.82.64.01.2Iris-versicolorIris-versicolor
295.84.01.20.2Iris-setosaIris-versicolor
305.93.05.11.8Iris-virginicaIris-versicolor
316.02.75.11.6Iris-versicolorIris-versicolor
326.12.84.01.3Iris-versicolorIris-versicolor
336.13.04.61.4Iris-versicolorIris-versicolor
346.32.55.01.9Iris-virginicaIris-versicolor
356.33.36.02.5Iris-virginicaIris-virginica
366.33.45.62.4Iris-virginicaIris-virginica
376.42.85.62.2Iris-virginicaIris-versicolor
386.42.94.31.3Iris-versicolorIris-versicolor
396.63.04.41.4Iris-versicolorIris-versicolor
406.73.35.72.1Iris-virginicaIris-virginica
417.13.05.92.1Iris-virginicaIris-virginica
423.34.55.67.8Iris-setosaIris-setosa
434.34.79.61.8Iris-virginicaIris-virginica
444.34.79.61.8Iris-virginicaIris-virginica
Rows: 1-44 | Columns: 6

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.