
verticapy.machine_learning.vertica.ensemble.RandomForestRegressor.predict¶
- RandomForestRegressor.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame ¶
Predicts using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
andSELECT 1
are invalid.- X: SQLColumns, optional
list
of the columns used to deploy the models. If empty, the model predictors are used.- name: str, optional
Name of the added :py:class`vDataColumn`. If empty, a name is generated.
- inplace: bool, optional
If set to True, the prediction is added to the :py:class`vDataFrame`.
Returns¶
- vDataFrame
the input object.
Examples¶
We import
verticapy
:import verticapy as vp
For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Divide your dataset into training and testing subsets.
data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Let’s import the model:
from verticapy.machine_learning.vertica import LinearRegression
Then we can create the model:
model = LinearRegression( tol = 1e-6, max_iter = 100, solver = 'newton', fit_intercept = True, )
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err | t_value |p_value ----------------+-----------+--------+---------+-------- Intercept | 155.60915 | 6.84239|22.74192 | 0.00000 fixed_acidity | 0.15068 | 0.01238|12.17306 | 0.00000 volatile_acidity| -0.69937 | 0.08838|-7.91304 | 0.00000 citric_acid | -0.09591 | 0.09443|-1.01572 | 0.30981 residual_sugar | 0.04322 | 0.00382|11.32451 | 0.00000 chlorides | 0.04147 | 0.37962| 0.10925 | 0.91301 density |-151.65007 | 6.95932|-21.79094| 0.00000 ============== regularization ============== type| lambda ----+-------- none| 1.00000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_da39166e55a311ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_da48ceec55a311ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5200
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5.11478769213235 2 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 6.31711947785311 3 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 5.98285820965313 4 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 5.7474574802917 5 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 6.3458351901412 6 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 5.68409606866857 7 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 5.79192076670216 8 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 5.99904133842318 9 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 5.90603852094378 10 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 5.43386766691555 11 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 6.24172623500067 12 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 6.19462859809417 13 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 5.8402522422021 14 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 5.62671609568807 15 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 6.0954210160119 16 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 5.94270348880801 17 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.98453904340857 18 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.98453904340857 19 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 5.65257965488857 20 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 5.82252340131078 21 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 6.22927761702064 22 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 5.78286908283127 23 5.2 0.31 0.2 2.4 0.027 27.0 117.0 0.98886 3.56 0.45 13.0 7 1 white 6.30087718069828 24 5.2 0.34 0.0 1.8 0.05 27.0 63.0 0.9916 3.68 0.79 14.0 6 0 red 5.85858159549917 25 5.2 0.34 0.37 6.2 0.031 42.0 133.0 0.99076 3.25 0.41 12.5 6 0 white 6.13984435130834 26 5.2 0.37 0.33 1.2 0.028 13.0 81.0 0.9902 3.37 0.38 11.7 6 0 white 5.99141653827411 27 5.2 0.48 0.04 1.6 0.054 19.0 106.0 0.9927 3.54 0.62 12.2 7 1 red 5.58154046551391 28 5.2 0.6 0.07 7.0 0.044 33.0 147.0 0.9944 3.33 0.58 9.7 5 0 white 5.4698880316451 29 5.3 0.26 0.23 5.15 0.034 48.0 160.0 0.9952 3.82 0.51 10.5 7 1 white 5.50571123532217 30 5.3 0.3 0.3 1.2 0.029 25.0 93.0 0.98742 3.31 0.4 13.6 7 1 white 6.47994707441322 31 5.3 0.31 0.38 10.5 0.031 53.0 140.0 0.99321 3.34 0.46 11.7 6 0 white 5.98922337091537 32 5.3 0.32 0.23 9.65 0.026 26.0 119.0 0.99168 3.18 0.53 12.2 6 0 white 6.19169991660931 33 5.3 0.33 0.3 1.2 0.048 25.0 119.0 0.99045 3.32 0.62 11.3 6 0 white 6.000254203135 34 5.3 0.36 0.27 6.3 0.028 40.0 132.0 0.99186 3.37 0.4 11.6 6 0 white 5.98789890960219 35 5.4 0.22 0.29 1.2 0.045 69.0 152.0 0.99178 3.76 0.63 11.0 7 1 white 5.89139367626393 36 5.4 0.265 0.28 7.8 0.052 27.0 91.0 0.99432 3.19 0.38 10.4 6 0 white 5.76120956673361 37 5.4 0.27 0.22 4.6 0.022 29.0 107.0 0.98889 3.33 0.54 13.8 6 0 white 6.44739020447952 38 5.4 0.415 0.19 1.6 0.039 27.0 88.0 0.99265 3.54 0.41 10.0 7 1 white 5.64970978649009 39 5.4 0.46 0.15 2.1 0.026 29.0 130.0 0.98953 3.39 0.77 13.4 8 1 white 6.11629195131138 40 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 6.23982200625463 41 5.4 0.59 0.07 7.0 0.045 36.0 147.0 0.9944 3.34 0.57 9.7 6 0 white 5.50706007010209 42 5.4 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 5.43404940084812 43 5.5 0.15 0.32 14.0 0.031 16.0 99.0 0.99437 3.26 0.38 11.5 8 1 white 6.11235848322542 44 5.5 0.16 0.22 4.5 0.03 30.0 102.0 0.9938 3.24 0.36 9.4 6 0 white 5.7907978484393 45 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.65 6 0 white 6.24598527907335 46 5.5 0.17 0.23 2.9 0.039 10.0 108.0 0.99243 3.28 0.5 10.0 5 0 white 5.92183232603446 47 5.5 0.23 0.19 2.2 0.044 39.0 161.0 0.99209 3.19 0.43 10.4 6 0 white 5.90522336173808 48 5.5 0.24 0.32 8.7 0.06 19.0 102.0 0.994 3.27 0.31 10.4 5 0 white 5.87768043970047 49 5.5 0.24 0.45 1.7 0.046 22.0 113.0 0.99224 3.22 0.48 10.0 5 0 white 5.82901913399164 50 5.5 0.28 0.21 1.6 0.032 23.0 85.0 0.99027 3.42 0.42 12.5 5 0 white 6.11791198635026 51 5.5 0.29 0.3 1.1 0.022 20.0 110.0 0.98869 3.34 0.38 12.8 7 1 white 6.31987009029041 52 5.5 0.3 0.25 1.9 0.029 33.0 118.0 0.98972 3.36 0.66 12.5 6 0 white 6.19633607147532 53 5.5 0.31 0.29 3.0 0.027 16.0 102.0 0.99067 3.23 0.56 11.2 6 0 white 6.08889350489406 54 5.5 0.62 0.33 1.7 0.037 24.0 118.0 0.98758 3.15 0.39 13.55 6 0 white 6.28108352980328 55 5.6 0.15 0.26 5.55 0.051 51.0 139.0 0.99336 3.47 0.5 11.0 6 0 white 5.92199778251825 56 5.6 0.15 0.31 5.3 0.038 8.0 79.0 0.9923 3.3 0.39 10.5 6 0 white 6.06660785837619 57 5.6 0.175 0.29 0.8 0.043 20.0 67.0 0.99112 3.28 0.48 9.9 6 0 white 6.03572173055582 58 5.6 0.18 0.27 1.7 0.03 31.0 103.0 0.98892 3.35 0.37 12.9 6 0 white 6.40612905871146 59 5.6 0.18 0.29 2.3 0.04 5.0 47.0 0.99126 3.07 0.45 10.1 4 0 white 6.07569429367578 60 5.6 0.18 0.58 1.25 0.034 29.0 129.0 0.98984 3.51 0.6 12.0 7 1 white 6.21759607043046 61 5.6 0.19 0.46 1.1 0.032 33.0 115.0 0.9909 3.36 0.5 10.4 6 0 white 6.05479754051606 62 5.6 0.23 0.25 8.0 0.043 31.0 101.0 0.99429 3.19 0.42 10.4 6 0 white 5.83152141289679 63 5.6 0.29 0.05 0.8 0.038 11.0 30.0 0.9924 3.36 0.35 9.2 5 0 white 5.78399388734417 64 5.6 0.31 0.78 13.9 0.074 23.0 92.0 0.99677 3.39 0.48 10.5 6 0 red 5.6049084382978 65 5.6 0.33 0.28 1.2 0.031 33.0 97.0 0.99126 3.49 0.58 10.9 6 0 white 5.92383616197247 66 5.6 0.34 0.25 2.5 0.046 47.0 182.0 0.99093 3.21 0.4 11.3 5 0 white 6.0265680168566 67 5.6 0.34 0.3 6.9 0.038 23.0 89.0 0.99266 3.25 0.49 11.1 6 0 white 5.94923881228527 68 5.6 0.35 0.37 1.0 0.038 6.0 72.0 0.9902 3.37 0.34 11.4 5 0 white 6.05361252166156 69 5.6 0.35 0.4 6.3 0.022 23.0 174.0 0.9922 3.54 0.5 11.6 7 1 white 5.97581920839815 70 5.6 0.39 0.24 4.7 0.034 27.0 77.0 0.9906 3.28 0.36 12.7 5 0 white 6.13718185460976 71 5.6 0.42 0.34 2.4 0.022 34.0 97.0 0.98915 3.22 0.38 12.8 7 1 white 6.22660610369266 72 5.6 0.49 0.13 4.5 0.039 17.0 116.0 0.9907 3.42 0.9 13.7 7 1 white 6.05419425268576 73 5.6 0.49 0.13 4.5 0.039 17.0 116.0 0.9907 3.42 0.9 13.7 7 1 white 6.05419425268576 74 5.6 0.54 0.04 1.7 0.049 5.0 13.0 0.9942 3.72 0.58 11.4 5 0 red 5.37649103503932 75 5.6 0.62 0.03 1.5 0.08 6.0 13.0 0.99498 3.66 0.62 10.1 4 0 red 5.19585571485584 76 5.7 0.135 0.3 4.6 0.042 19.0 101.0 0.9946 3.31 0.42 9.3 6 0 white 5.71424514609234 77 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.54750848685322 78 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 5.58429647844497 79 5.7 0.24 0.3 1.3 0.03 25.0 98.0 0.98968 3.37 0.43 12.4 7 1 white 6.24381706587715 80 5.7 0.24 0.47 6.3 0.069 35.0 182.0 0.99391 3.11 0.46 9.75 5 0 white 5.80373217460817 81 5.7 0.25 0.21 1.5 0.044 21.0 108.0 0.99142 3.3 0.59 11.0 6 0 white 5.99080843388191 82 5.7 0.25 0.27 11.5 0.04 24.0 120.0 0.99411 3.33 0.31 10.8 6 0 white 6.00911469325482 83 5.7 0.255 0.65 1.2 0.079 17.0 137.0 0.99307 3.2 0.42 9.4 5 0 white 5.68337335239664 84 5.7 0.26 0.24 17.8 0.059 23.0 124.0 0.99773 3.3 0.5 10.1 5 0 white 5.7290775176883 85 5.7 0.265 0.28 6.9 0.036 46.0 150.0 0.99299 3.36 0.44 10.8 7 1 white 5.96855094598399 86 5.7 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 6.3356218740125 87 5.7 0.31 0.28 4.1 0.03 22.0 86.0 0.99062 3.31 0.38 11.7 7 1 white 6.17523463747466 88 5.7 0.32 0.38 4.75 0.033 23.0 94.0 0.991 3.42 0.42 11.8 7 1 white 6.12923767250786 89 5.7 0.335 0.34 1.0 0.04 13.0 174.0 0.992 3.27 0.66 10.0 5 0 white 5.80916177476897 90 5.7 0.4 0.35 5.1 0.026 17.0 113.0 0.99052 3.18 0.67 12.4 6 0 white 6.16379285836243 91 5.7 0.4 0.35 5.1 0.026 17.0 113.0 0.99052 3.18 0.67 12.4 6 0 white 6.16379285836243 92 5.7 1.13 0.09 1.5 0.172 7.0 19.0 0.994 3.5 0.48 9.8 4 0 red 5.00092216709507 93 5.8 0.12 0.21 1.3 0.056 35.0 121.0 0.9908 3.32 0.33 11.4 6 0 white 6.18267261221524 94 5.8 0.18 0.28 1.3 0.034 9.0 94.0 0.99092 3.21 0.52 11.2 6 0 white 6.11488589828352 95 5.8 0.18 0.37 1.2 0.036 19.0 74.0 0.98853 3.09 0.49 12.7 7 1 white 6.46445857599824 96 5.8 0.19 0.24 1.3 0.044 38.0 128.0 0.99362 3.77 0.6 10.6 5 0 white 5.70268829477021 97 5.8 0.19 0.33 4.2 0.038 49.0 133.0 0.99107 3.16 0.42 11.3 7 1 white 6.20584290115616 98 5.8 0.24 0.26 10.05 0.039 63.0 162.0 0.99375 3.33 0.5 11.2 6 0 white 6.02402450487671 99 5.8 0.24 0.44 3.5 0.029 5.0 109.0 0.9913 3.53 0.43 11.7 3 0 white 6.09481938691061 100 5.8 0.25 0.28 11.1 0.056 45.0 175.0 0.99755 3.42 0.43 9.5 5 0 white 5.48492469053153 Rows: 1-100 | Columns: 15Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.