Loading...

verticapy.machine_learning.vertica.pipeline.Pipeline.transform

Pipeline.transform(vdf: Annotated[str | vDataFrame, ''] | None = None, X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None) vDataFrame

Applies the model on a vDataFrame.

Parameters

vdf: SQLRelation, optional

Input vDataFrame. You can also specify a customized relation, but you must enclose it with an alias. For example: (SELECT 1) x is valid whereas (SELECT 1) and “SELECT 1” are invalid.

X: SQLColumns, optional

List of the input vDataColumns.

Returns

vDataFrame

object result of the model transformation.