Loading...

verticapy.machine_learning.model_selection.randomized_features_search_cv#

verticapy.machine_learning.model_selection.randomized_features_search_cv(estimator: VerticaModel, input_relation: str | vDataFrame, X: str | list[str], y: str, metric: str = 'auto', cv: int = 3, average: Literal['binary', 'micro', 'macro', 'weighted'] = 'weighted', pos_label: bool | float | str | timedelta | datetime | None = None, cutoff: int | float | Decimal = -1, training_score: bool = True, comb_limit: int = 100, skip_error: bool = True, print_info: bool = True, **kwargs) TableSample#

Computes the k-fold grid search of an estimator using different feature combinations. It can be used to find the set of variables that will optimize the model.

estimator: VerticaModel

Vertica estimator with a fit method.

input_relation: SQLRelation

Relation used to train the model.

X: SQLColumns

List of the predictor columns.

y: str

Response Column.

metric: str, optional

Metric used for the model evaluation.

  • auto:

    logloss for classification & rmse for regression.

For Classification:

  • accuracy:

    Accuracy.

    \[Accuracy = \frac{TP + TN}{TP + TN + FP + FN}\]
  • auc:

    Area Under the Curve (ROC).

    \[AUC = \int_{0}^{1} TPR(FPR) \, dFPR\]
  • ba:

    Balanced Accuracy.

    \[BA = \frac{TPR + TNR}{2}\]
  • bm:

    Informedness

    \[BM = TPR + TNR - 1\]
  • csi:

    Critical Success Index

    \[index = \frac{TP}{TP + FN + FP}\]
  • f1:

    F1 Score .. math:

    F_1 Score = 2 \times 
    

rac{Precision times Recall}{Precision + Recall}

  • fdr:

    False Discovery Rate

    \[FDR = 1 - PPV\]
  • fm:

    Fowlkes-Mallows index

    \[FM = \sqrt{PPV * TPR}\]
  • fnr:

    False Negative Rate

    \[FNR = \frac{FN}{FN + TP}\]
  • for:

    False Omission Rate

    \[FOR = 1 - NPV\]
  • fpr:

    False Positive Rate

    \[FPR = \frac{FP}{FP + TN}\]
  • logloss:

    Log Loss

    \[Loss = -\frac{1}{N} \sum_{i=1}^{N} \left( y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right)\]
  • lr+:

    Positive Likelihood Ratio.

    \[LR+ = \frac{TPR}{FPR}\]
  • lr-:

    Negative Likelihood Ratio.

    \[LR- = \frac{FNR}{TNR}\]
  • dor:

    Diagnostic Odds Ratio.

    \[DOR = \frac{TP \times TN}{FP \times FN}\]
  • mcc:

    Matthews Correlation Coefficient

  • mk:

    Markedness

    \[MK = PPV + NPV - 1\]
  • npv:

    Negative Predictive Value

    \[NPV = \frac{TN}{TN + FN}\]
  • prc_auc:

    Area Under the Curve (PRC)

    \[AUC = \int_{0}^{1} Precision(Recall) \, dRecall\]
  • precision:

    Precision

    \[TP / (TP + FP)\]
  • pt:

    Prevalence Threshold.

    \[\frac{\sqrt{FPR}}{\sqrt{TPR} + \sqrt{FPR}}\]
  • recall:

    Recall.

    \[TP / (TP + FN)\]
  • specificity:

    Specificity.

    \[TN / (TN + FP)\]

For Regression:

  • max:

    Max Error.

    \[ME = \max_{i=1}^{n} \left| y_i - \hat{y}_i \right|\]
  • mae:

    Mean Absolute Error.

    \[MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \hat{y}_i \right|\]
  • median:

    Median Absolute Error.

    \[MedAE = \text{median}_{i=1}^{n} \left| y_i - \hat{y}_i \right|\]
  • mse:

    Mean Squared Error.

    \[MSE = \frac{1}{n} \sum_{i=1}^{n} \left( y_i - \hat{y}_i \right)^2\]
  • msle:

    Mean Squared Log Error.

    \[MSLE = \frac{1}{n} \sum_{i=1}^{n} (\log(1 + y_i) - \log(1 + \hat{y}_i))^2\]
  • r2:

    R squared coefficient.

    \[R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}\]
  • r2a:

    R2 adjusted

    \[\text{Adjusted } R^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - k - 1}\]
  • var:

    Explained Variance.

    \[VAR = 1 - \frac{Var(y - \hat{y})}{Var(y)}\]
  • rmse:

    Root-mean-squared error

    \[RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}\]
cv: int, optional

Number of folds.

average: str, optional

The method used to compute the final score for multiclass-classification.

  • binary:

    considers one of the classes as positive and use the binary confusion matrix to compute the score.

  • micro:

    positive and negative values globally.

  • macro:

    average of the score of each class.

  • weighted:

    weighted average of the score of each class.

pos_label: PythonScalar, optional

The main class to be considered as positive (classification only).

cutoff: float, optional

The model cutoff (classification only).

training_score: bool, optional

If set to True, the training score is computed with the validation score.

comb_limit: int, optional

Maximum number of features combinations used to train the model.

skip_error: bool, optional

If set to True and an error occurs, the error is displayed but not raised.

print_info: bool, optional

If set to True, prints the model information at each step.

TableSample

result of the randomized features search.

Let us use a dataset which has a variety of predictors and one value of interest. The Titanic dataset is a good example.

import verticapy.datasets as vpd

data = vpd.load_titanic()
123
pclass
Integer
123
survived
Integer
Abc
Varchar(164)
Abc
sex
Varchar(20)
123
age
Numeric(8)
123
sibsp
Integer
123
parch
Integer
Abc
ticket
Varchar(36)
123
fare
Numeric(12)
Abc
cabin
Varchar(30)
Abc
embarked
Varchar(20)
Abc
boat
Varchar(100)
123
body
Integer
Abc
home.dest
Varchar(100)
110female2.012113781151.55C22 C26S[null][null]Montreal, PQ / Chesterville, ON
210male30.012113781151.55C22 C26S[null]135Montreal, PQ / Chesterville, ON
310female25.012113781151.55C22 C26S[null][null]Montreal, PQ / Chesterville, ON
410male39.0001120500.0A36S[null][null]Belfast, NI
510male71.000PC 1760949.5042[null]C[null]22Montevideo, Uruguay
610male47.010PC 17757227.525C62 C64C[null]124New York, NY
710male[null]00PC 1731825.925[null]S[null][null]New York, NY
810male24.001PC 17558247.5208B58 B60C[null][null]Montreal, PQ
910male36.0001305075.2417C6CA[null]Winnipeg, MN
1010male25.0001390526.0[null]C[null]148San Francisco, CA
1110male45.00011378435.5TS[null][null]Trenton, NJ
1210male42.00011048926.55D22S[null][null]London / Winnipeg, MB
1310male41.00011305430.5A21S[null][null]Pomeroy, WA
1410male48.000PC 1759150.4958B10C[null]208Omaha, NE
1510male[null]0011237939.6[null]C[null][null]Philadelphia, PA
1610male45.00011305026.55B38S[null][null]Washington, DC
1710male[null]0011379831.0[null]S[null][null][null]
1810male33.0006955.0B51 B53 B55S[null][null]New York, NY
1910male28.00011305947.1[null]S[null][null]Montevideo, Uruguay
2010male17.00011305947.1[null]S[null][null]Montevideo, Uruguay
2110male49.0001992426.0[null]S[null][null]Ascot, Berkshire / Rochester, NY
2210male36.0101987778.85C46S[null]172Little Onn Hall, Staffs
2310male46.010W.E.P. 573461.175E31S[null][null]Amenia, ND
2410male[null]001120510.0[null]S[null][null]Liverpool, England / Belfast
2510male27.01013508136.7792C89C[null][null]Los Angeles, CA
2610male[null]0011046552.0A14S[null][null]Stoughton, MA
2710male47.000572725.5875E58S[null][null]Victoria, BC
2810male37.011PC 1775683.1583E52C[null][null]Lakewood, NJ
2910male[null]0011379126.55[null]S[null][null]Roachdale, IN
3010male70.011WE/P 573571.0B22S[null]269Milwaukee, WI
3110male39.010PC 1759971.2833C85C[null][null]New York, NY
3210male31.010F.C. 1275052.0B71S[null][null]Montreal, PQ
3310male50.010PC 17761106.425C86C[null]62Deephaven, MN / Cedar Rapids, IA
3410male39.000PC 1758029.7A18C[null]133Philadelphia, PA
3510female36.000PC 1753131.6792A29C[null][null]New York, NY
3610male[null]00PC 17483221.7792C95S[null][null][null]
3710male30.00011305127.75C111C[null][null]New York, NY
3810male19.03219950263.0C23 C25 C27S[null][null]Winnipeg, MB
3910male64.01419950263.0C23 C25 C27S[null][null]Winnipeg, MB
4010male[null]0011377826.55D34S[null][null]Westcliff-on-Sea, Essex
4110male[null]001120580.0B102S[null][null][null]
4210male37.01011380353.1C123S[null][null]Scituate, MA
4310male47.00011132038.5E63S[null]275St Anne's-on-Sea, Lancashire
4410male24.000PC 1759379.2B86C[null][null][null]
4510male71.000PC 1775434.6542A5C[null][null]New York, NY
4610male38.001PC 17582153.4625C91S[null]147Winnipeg, MB
4710male46.000PC 1759379.2B82 B84C[null][null]New York, NY
4810male[null]0011379642.4[null]S[null][null][null]
4910male45.0103697383.475C83S[null][null]New York, NY
5010male40.0001120590.0B94S[null]110[null]
5110male55.0111274993.5B69S[null]307Montreal, PQ
5210male42.00011303842.5B11S[null][null]London / Middlesex
5310male[null]001746351.8625E46S[null][null]Brighton, MA
5410male55.00068050.0C39S[null][null]London / Birmingham
5510male42.01011378952.0[null]S[null]38New York, NY
5610male[null]00PC 1760030.6958[null]C14[null]New York, NY
5710female50.000PC 1759528.7125C49C[null][null]Paris, France New York, NY
5810male46.00069426.0[null]S[null]80Bennington, VT
5910male50.00011304426.0E60S[null][null]London
6010male32.500113503211.5C132C[null]45[null]
6110male58.0001177129.7B37C[null]258Buffalo, NY
6210male41.0101746451.8625D21S[null][null]Southington / Noank, CT
6310male[null]0011302826.55C124S[null][null]Portland, OR
6410male[null]00PC 1761227.7208[null]C[null][null]Chicago, IL
6510male29.00011350130.0D6S[null]126Springfield, MA
6610male30.00011380145.5[null]S[null][null]London / New York, NY
6710male30.00011046926.0C106S[null][null]Brockton, MA
6810male19.01011377353.1D30S[null][null]New York, NY
6910male46.0001305075.2417C6C[null]292Vancouver, BC
7010male54.0001746351.8625E46S[null]175Dorchester, MA
7110male28.010PC 1760482.1708[null]C[null][null]New York, NY
7210male65.0001350926.55E38S[null]249East Bridgewater, MA
7310male44.0201992890.0C78Q[null]230Fond du Lac, WI
7410male55.00011378730.5C30S[null][null]Montreal, PQ
7510male47.00011379642.4[null]S[null][null]Washington, DC
7610male37.001PC 1759629.7C118C[null][null]Brooklyn, NY
7710male58.00235273113.275D48C[null]122Lexington, MA
7810male64.00069326.0[null]S[null]263Isle of Wight, England
7910male65.00111350961.9792B30C[null]234Providence, RI
8010male28.500PC 1756227.7208D43C[null]189?Havana, Cuba
8110male[null]001120520.0[null]S[null][null]Belfast
8210male45.50011304328.5C124S[null]166Surbiton Hill, Surrey
8310male23.0001274993.5B24S[null][null]Montreal, PQ
8410male29.01011377666.6C2S[null][null]Isleworth, England
8510male18.010PC 17758108.9C65C[null][null]Madrid, Spain
8610male47.00011046552.0C110S[null]207Worcester, MA
8710male38.000199720.0[null]S[null][null]Rotterdam, Netherlands
8810male22.000PC 17760135.6333[null]C[null]232[null]
8910male[null]00PC 17757227.525[null]C[null][null][null]
9010male31.000PC 1759050.4958A24S[null][null]Trenton, NJ
9110male[null]0011376750.0A32S[null][null]Seattle, WA
9210male36.0001304940.125A10C[null][null]Winnipeg, MB
9310male55.010PC 1760359.4[null]C[null][null]New York, NY
9410male33.00011379026.55[null]S[null]109London
9510male61.013PC 17608262.375B57 B59 B63 B66C[null][null]Haverford, PA / Cooperstown, NY
9610male50.0101350755.9E44S[null][null]Duluth, MN
9710male56.00011379226.55[null]S[null][null]New York, NY
9810male56.0001776430.6958A7C[null][null]St James, Long Island, NY
9910male24.0101369560.0C31S[null][null]Huntington, WV
10010male[null]0011305626.0A19S[null][null]Streatham, Surrey
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

Next, we can initialize a Logistic Regression model:

from verticapy.machine_learning.vertica import LogisticRegression

model = LogisticRegression()

Now we can conveniently use the randomized_features_search_cv function to do either forward or backward randomized features search feature selection.

from verticapy.machine_learning.model_selection import randomized_features_search_cv

result = randomized_features_search_cv(
    model,
    input_relation = data,
    X = ["age", "fare", "parch", "pclass",],
    y = "survived",
    cv = 3,
)
avg_score
avg_train_score
avg_time
score_std
score_train_std
10.2442171340921050.2632104228964060.40174674987792970.0040989290007450210.0015892942575622539
20.253279869046008350.256498602220793350.435892184575398740.0062761311966745820.0031797876140601017
30.257864582439378650.253085840115537640.39178061485290530.0094495991181301860.004839972263421477
40.2582409646973230.261669828372580350.37039192517598470.0028194171082038770.0014118052140200557
50.259397508896164360.252709236011979640.66146628061930330.004875746601982640.0023459354065173215
60.25993171859748140.256898345139205340.40167363484700520.002027610298907480.0007257718884687349
70.260683405932784330.25776787773444430.42254519462585450.00305584334346497860.0016785041995893242
80.262278456351307030.257208389185105360.37688334782918290.0050197626613073010.0024398909590766607
90.264722621290323030.270626659393561730.38812160491943360.0064286908592057870.003841704324837454
100.267513471880647670.27383940424705030.437997341156005860.0059967750353656490.002732972594558225
110.2678591904433350.27375697761503630.40735491116841630.00308220002314318030.0015413053787413267
120.27193852576238430.266773504428197360.404932260513305660.0046287568859784270.00213473604020562
130.279680982194427330.2857545804507720.363789796829223630.0062971500415354990.0034667225869149682
140.286429285400478630.28940348148467030.34274697303771970.00198865589775474270.0013307307873157593
150.292441034273436040.28979165992307270.340991417566935240.00040725562343433140.000560395779800286
Rows: 1-15 | Columns: 6

Note

The models are arranged in ascending order of avg_score.