
verticapy.machine_learning.vertica.linear_model.Ridge.predict¶
- Ridge.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame ¶
Predicts using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
andSELECT 1
are invalid.- X: SQLColumns, optional
list
of the columns used to deploy the models. If empty, the model predictors are used.- name: str, optional
Name of the added :py:class`vDataColumn`. If empty, a name is generated.
- inplace: bool, optional
If set to True, the prediction is added to the :py:class`vDataFrame`.
Returns¶
- vDataFrame
the input object.
Examples¶
We import
verticapy
:import verticapy as vp
For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Divide your dataset into training and testing subsets.
data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Let’s import the model:
from verticapy.machine_learning.vertica import LinearRegression
Then we can create the model:
model = LinearRegression( tol = 1e-6, max_iter = 100, solver = 'newton', fit_intercept = True, )
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err | t_value |p_value ----------------+-----------+--------+---------+-------- Intercept | 141.92890 | 6.74303|21.04824 | 0.00000 fixed_acidity | 0.13622 | 0.01225|11.12116 | 0.00000 volatile_acidity| -0.73752 | 0.08708|-8.46995 | 0.00000 citric_acid | -0.14330 | 0.09385|-1.52695 | 0.12683 residual_sugar | 0.04129 | 0.00382|10.81619 | 0.00000 chlorides | -0.17989 | 0.38067|-0.47257 | 0.63654 density |-137.74094 | 6.85829|-20.08386| 0.00000 ============== regularization ============== type| lambda ----+-------- none| 1.00000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_3c197ab855a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_3c2ebdba55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5201
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 5.96181645599447 2 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 5.39568127494172 3 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 5.42690558392533 4 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 6.38705621949643 5 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 5.98362375093024 6 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 6.15875063178515 7 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 5.98823982048654 8 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 6.37136705456615 9 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 5.79914983797283 10 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 6.00849846451098 11 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 5.93709624546892 12 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 5.73997674293173 13 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 5.50650673271869 14 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 5.01479046024318 15 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 5.88306365468782 16 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 5.65934588501182 17 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 6.1428393788436 18 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 6.1428393788436 19 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.98045467892197 20 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 6.09045165231177 21 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 5.52937522414859 22 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 5.88753711691217 23 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 6.20073831679278 24 5.2 0.28 0.29 1.1 0.028 18.0 69.0 0.99168 3.24 0.54 10.0 6 0 white 5.83465632228447 25 5.2 0.3 0.34 1.5 0.038 18.0 96.0 0.98942 3.56 0.48 13.0 8 1 white 6.13875388534743 26 5.2 0.32 0.25 1.8 0.103 13.0 50.0 0.9957 3.38 0.55 9.2 5 0 red 5.27258278729732 27 5.2 0.335 0.2 1.7 0.033 17.0 74.0 0.99002 3.34 0.48 12.3 6 0 white 6.05951685267334 28 5.2 0.49 0.26 2.3 0.09 23.0 74.0 0.9953 3.71 0.62 12.2 6 0 red 5.22385303846943 29 5.3 0.16 0.39 1.0 0.028 40.0 101.0 0.99156 3.57 0.59 10.6 6 0 white 5.93485052092237 30 5.3 0.2 0.31 3.6 0.036 22.0 91.0 0.99278 3.41 0.5 9.8 6 0 white 5.85469523798207 31 5.3 0.31 0.38 10.5 0.031 53.0 140.0 0.99321 3.34 0.46 11.7 6 0 white 5.99013600214425 32 5.3 0.33 0.3 1.2 0.048 25.0 119.0 0.99045 3.32 0.62 11.3 6 0 white 5.97992252577035 33 5.3 0.36 0.27 6.3 0.028 40.0 132.0 0.99186 3.37 0.4 11.6 6 0 white 5.98207850287852 34 5.3 0.43 0.11 1.1 0.029 6.0 51.0 0.99076 3.51 0.48 11.2 4 0 white 5.88998695196673 35 5.3 0.47 0.11 2.2 0.048 16.0 89.0 0.99182 3.54 0.88 13.5666666666667 7 1 red 5.75648609655673 36 5.3 0.58 0.07 6.9 0.043 34.0 149.0 0.9944 3.34 0.57 9.7 5 0 white 5.52070046478394 37 5.4 0.205 0.16 12.55 0.051 31.0 115.0 0.99564 3.4 0.38 10.8 6 0 white 5.85906939230674 38 5.4 0.22 0.35 6.5 0.029 26.0 87.0 0.99092 3.29 0.44 12.5 7 1 white 6.22504508839646 39 5.4 0.33 0.31 4.0 0.03 27.0 108.0 0.99031 3.3 0.43 12.2 7 1 white 6.13025693785363 40 5.4 0.5 0.13 5.0 0.028 12.0 107.0 0.99079 3.48 0.88 13.5 7 1 white 6.00621104232135 41 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 6.19053323786954 42 5.4 0.595 0.1 2.8 0.042 26.0 80.0 0.9932 3.36 0.38 9.3 5 0 white 5.51512461963995 43 5.4 0.835 0.08 1.2 0.046 13.0 93.0 0.9924 3.57 0.85 13.0 7 1 red 5.38438825464655 44 5.5 0.19 0.27 0.9 0.04 52.0 103.0 0.99026 3.5 0.39 11.2 5 0 white 6.12994131358519 45 5.5 0.21 0.25 1.2 0.04 18.0 75.0 0.99006 3.31 0.56 11.3 6 0 white 6.15799333962144 46 5.6 0.15 0.31 5.3 0.038 8.0 79.0 0.9923 3.3 0.39 10.5 6 0 white 6.06839432433469 47 5.6 0.18 0.31 1.5 0.038 16.0 84.0 0.9924 3.34 0.58 10.1 6 0 white 5.87557739912691 48 5.6 0.19 0.39 1.1 0.043 17.0 67.0 0.9918 3.23 0.53 10.3 6 0 white 5.92196537859317 49 5.6 0.19 0.47 4.5 0.03 19.0 112.0 0.9922 3.56 0.45 11.2 6 0 white 5.99814289947972 50 5.6 0.2 0.66 10.2 0.043 78.0 175.0 0.9945 2.98 0.43 10.4 7 1 white 5.87977295119805 51 5.6 0.205 0.16 12.55 0.051 31.0 115.0 0.99564 3.4 0.38 10.8 6 0 white 5.88631428770614 52 5.6 0.22 0.32 1.2 0.024 29.0 97.0 0.98823 3.2 0.46 13.05 7 1 white 6.40915352712938 53 5.6 0.235 0.29 1.2 0.047 33.0 127.0 0.991 3.34 0.5 11.0 7 1 white 6.01670985196066 54 5.6 0.25 0.19 2.4 0.049 42.0 166.0 0.992 3.25 0.43 10.4 6 0 white 5.93142946624721 55 5.6 0.25 0.26 3.6 0.037 18.0 115.0 0.9904 3.42 0.5 12.6 6 0 white 6.19349522560429 56 5.6 0.31 0.37 1.4 0.074 12.0 96.0 0.9954 3.32 0.58 9.2 5 0 red 5.34727294648059 57 5.6 0.32 0.32 8.3 0.043 32.0 105.0 0.99266 3.24 0.47 11.2 6 0 white 6.01497835907543 58 5.6 0.34 0.25 2.5 0.046 47.0 182.0 0.99093 3.21 0.4 11.3 5 0 white 6.00850616738944 59 5.6 0.41 0.24 1.9 0.034 10.0 53.0 0.98815 3.32 0.5 13.5 7 1 white 6.31861482382439 60 5.6 0.54 0.04 1.7 0.049 5.0 13.0 0.9942 3.72 0.58 11.4 5 0 red 5.40710784845606 61 5.7 0.15 0.28 3.7 0.045 57.0 151.0 0.9913 3.22 0.27 11.2 6 0 white 6.15672717917641 62 5.7 0.15 0.28 3.7 0.045 57.0 151.0 0.9913 3.22 0.27 11.2 6 0 white 6.15672717917641 63 5.7 0.18 0.22 4.2 0.042 25.0 111.0 0.994 3.35 0.39 9.4 5 0 white 5.79248588949076 64 5.7 0.21 0.32 0.9 0.038 38.0 121.0 0.99074 3.24 0.46 10.6 6 0 white 6.06951472104481 65 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.61639729024006 66 5.7 0.22 0.25 1.1 0.05 97.0 175.0 0.99099 3.44 0.62 11.1 6 0 white 6.0438356057619 67 5.7 0.26 0.27 4.1 0.201 73.5 189.5 0.9942 3.27 0.38 9.4 6 0 white 5.66603827180106 68 5.7 0.27 0.16 9.0 0.053 32.0 111.0 0.99474 3.36 0.37 10.4 6 0 white 5.82901119979439 69 5.7 0.32 0.5 2.6 0.049 17.0 155.0 0.9927 3.22 0.64 10.0 6 0 white 5.76084136305442 70 5.7 0.33 0.32 1.4 0.043 28.0 93.0 0.9897 3.31 0.5 12.3 6 0 white 6.14401021428955 71 5.7 0.44 0.13 7.0 0.025 28.0 173.0 0.9913 3.33 0.48 12.5 6 0 white 6.10420948185171 72 5.7 0.45 0.42 1.1 0.051 61.0 197.0 0.9932 3.02 0.4 9.0 5 0 white 5.54525658351608 73 5.8 0.12 0.21 1.3 0.056 35.0 121.0 0.9908 3.32 0.33 11.4 6 0 white 6.17029259742125 74 5.8 0.13 0.22 12.7 0.058 24.0 183.0 0.9956 3.32 0.42 11.7 6 0 white 5.97071957172071 75 5.8 0.13 0.26 5.1 0.039 19.0 103.0 0.99478 3.36 0.47 9.3 6 0 white 5.76751861773522 76 5.8 0.15 0.31 5.9 0.036 7.0 73.0 0.99152 3.2 0.43 11.9 6 0 white 6.22821333746455 77 5.8 0.17 0.36 1.3 0.036 11.0 70.0 0.99202 3.43 0.68 10.4 7 1 white 5.94747487029704 78 5.8 0.19 0.33 4.2 0.038 49.0 133.0 0.99107 3.16 0.42 11.3 7 1 white 6.18727023689678 79 5.8 0.2 0.3 1.5 0.031 21.0 57.0 0.99115 3.44 0.55 11.0 6 0 white 6.06294032850636 80 5.8 0.275 0.3 5.4 0.043 41.0 149.0 0.9926 3.33 0.42 10.8 7 1 white 5.96678968335388 81 5.8 0.28 0.3 1.5 0.026 31.0 114.0 0.98952 3.32 0.6 12.5 7 1 white 6.22935578808756 82 5.8 0.28 0.35 2.3 0.053 36.0 114.0 0.9924 3.28 0.5 10.2 4 0 white 5.85367475559536 83 5.8 0.29 0.15 1.1 0.029 12.0 83.0 0.9898 3.3 0.4 11.4 6 0 white 6.18785139249349 84 5.8 0.29 0.27 1.6 0.062 17.0 140.0 0.99138 3.23 0.35 11.1 6 0 white 5.96773475918448 85 5.8 0.3 0.12 1.6 0.036 57.0 163.0 0.99239 3.38 0.59 10.5 6 0 white 5.84741399196145 86 5.8 0.3 0.33 3.5 0.033 25.0 116.0 0.99057 3.2 0.44 11.7 6 0 white 6.14700698402999 87 5.8 0.32 0.2 2.6 0.027 17.0 123.0 0.98936 3.36 0.78 13.9 7 1 white 6.28146734348928 88 5.8 0.32 0.38 4.75 0.033 23.0 94.0 0.991 3.42 0.42 11.8 7 1 white 6.11748024837823 89 5.8 0.33 0.2 16.05 0.047 26.0 166.0 0.9976 3.09 0.46 8.9 5 0 white 5.69091312023588 90 5.8 0.33 0.23 5.0 0.053 29.0 106.0 0.99458 3.13 0.52 9.0 5 0 white 5.64521365124367 91 5.8 0.385 0.25 3.7 0.031 38.0 122.0 0.99128 3.2 0.63 11.2 6 0 white 6.00660445192008 92 5.8 0.58 0.0 1.5 0.02 33.0 96.0 0.98918 3.29 0.38 12.4 6 0 white 6.09900166471775 93 5.8 0.6 0.0 1.3 0.044 72.0 197.0 0.99202 3.56 0.43 10.9 5 0 white 5.6804907093688 94 5.9 0.14 0.2 1.6 0.04 26.0 114.0 0.99105 3.25 0.45 11.4 6 0 white 6.15142890948039 95 5.9 0.18 0.28 1.0 0.037 24.0 88.0 0.99094 3.29 0.55 10.65 7 1 white 6.10137852534641 96 5.9 0.19 0.26 7.4 0.034 33.0 123.0 0.995 3.49 0.42 10.1 6 0 white 5.80246240662399 97 5.9 0.19 0.37 0.8 0.027 3.0 21.0 0.9897 3.09 0.31 10.8 5 0 white 6.24544487374567 98 5.9 0.2 0.23 1.5 0.037 38.0 93.0 0.99021 3.36 0.49 12.0 6 0 white 6.21499116172603 99 5.9 0.2 0.28 12.8 0.038 29.0 132.0 0.99426 3.31 0.57 11.8 7 1 white 6.11641740323228 100 5.9 0.21 0.23 7.9 0.033 22.0 130.0 0.9944 3.38 0.59 10.9 6 0 white 5.89548253914867 Rows: 1-100 | Columns: 15Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.