Loading...

verticapy.machine_learning.vertica.linear_model.Ridge.predict

Ridge.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 141.92890 | 6.74303|21.04824 | 0.00000
 fixed_acidity  |  0.13622  | 0.01225|11.12116 | 0.00000
volatile_acidity| -0.73752  | 0.08708|-8.46995 | 0.00000
  citric_acid   | -0.14330  | 0.09385|-1.52695 | 0.12683
 residual_sugar |  0.04129  | 0.00382|10.81619 | 0.00000
   chlorides    | -0.17989  | 0.38067|-0.47257 | 0.63654
    density     |-137.74094 | 6.85829|-20.08386| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_3c197ab855a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_3c2ebdba55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5201 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white5.96181645599447
24.60.520.152.10.0548.065.00.99343.90.5613.140red5.39568127494172
34.80.650.121.10.0134.010.00.992463.320.3613.540white5.42690558392533
44.90.330.311.20.01639.0150.00.987133.330.5914.081white6.38705621949643
54.90.470.171.90.03560.0148.00.989643.270.3511.560white5.98362375093024
65.00.20.41.90.01520.098.00.98973.370.5512.0560white6.15875063178515
75.00.240.212.20.03931.0100.00.990983.690.6211.760white5.98823982048654
85.00.240.341.10.03449.0158.00.987743.320.3213.171white6.37136705456615
95.00.330.161.50.04910.097.00.99173.480.4410.760white5.79914983797283
105.00.330.2311.80.0323.0158.00.993223.410.6411.860white6.00849846451098
115.00.350.257.80.03124.0116.00.992413.390.411.360white5.93709624546892
125.00.420.242.00.0619.050.00.99173.720.7414.081red5.73997674293173
135.00.440.0418.60.03938.0128.00.99853.370.5710.260white5.50650673271869
145.01.020.041.40.04541.085.00.99383.750.4810.540red5.01479046024318
155.10.210.281.40.04748.0148.00.991683.50.4910.450white5.88306365468782
165.10.260.346.40.03426.099.00.994493.230.419.260white5.65934588501182
175.10.330.221.60.02718.089.00.98933.510.3812.571white6.1428393788436
185.10.330.221.60.02718.089.00.98933.510.3812.571white6.1428393788436
195.10.350.266.80.03436.0120.00.991883.380.411.560white5.98045467892197
205.10.420.011.50.01725.0102.00.98943.380.3612.371white6.09045165231177
215.10.520.062.70.05230.079.00.99323.320.439.350white5.52937522414859
225.20.20.273.20.04716.093.00.992353.440.5310.171white5.88753711691217
235.20.210.311.70.04817.061.00.989533.240.3712.071white6.20073831679278
245.20.280.291.10.02818.069.00.991683.240.5410.060white5.83465632228447
255.20.30.341.50.03818.096.00.989423.560.4813.081white6.13875388534743
265.20.320.251.80.10313.050.00.99573.380.559.250red5.27258278729732
275.20.3350.21.70.03317.074.00.990023.340.4812.360white6.05951685267334
285.20.490.262.30.0923.074.00.99533.710.6212.260red5.22385303846943
295.30.160.391.00.02840.0101.00.991563.570.5910.660white5.93485052092237
305.30.20.313.60.03622.091.00.992783.410.59.860white5.85469523798207
315.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.99013600214425
325.30.330.31.20.04825.0119.00.990453.320.6211.360white5.97992252577035
335.30.360.276.30.02840.0132.00.991863.370.411.660white5.98207850287852
345.30.430.111.10.0296.051.00.990763.510.4811.240white5.88998695196673
355.30.470.112.20.04816.089.00.991823.540.8813.566666666666771red5.75648609655673
365.30.580.076.90.04334.0149.00.99443.340.579.750white5.52070046478394
375.40.2050.1612.550.05131.0115.00.995643.40.3810.860white5.85906939230674
385.40.220.356.50.02926.087.00.990923.290.4412.571white6.22504508839646
395.40.330.314.00.0327.0108.00.990313.30.4312.271white6.13025693785363
405.40.50.135.00.02812.0107.00.990793.480.8813.571white6.00621104232135
415.40.530.162.70.03634.0128.00.988563.20.5313.281white6.19053323786954
425.40.5950.12.80.04226.080.00.99323.360.389.350white5.51512461963995
435.40.8350.081.20.04613.093.00.99243.570.8513.071red5.38438825464655
445.50.190.270.90.0452.0103.00.990263.50.3911.250white6.12994131358519
455.50.210.251.20.0418.075.00.990063.310.5611.360white6.15799333962144
465.60.150.315.30.0388.079.00.99233.30.3910.560white6.06839432433469
475.60.180.311.50.03816.084.00.99243.340.5810.160white5.87557739912691
485.60.190.391.10.04317.067.00.99183.230.5310.360white5.92196537859317
495.60.190.474.50.0319.0112.00.99223.560.4511.260white5.99814289947972
505.60.20.6610.20.04378.0175.00.99452.980.4310.471white5.87977295119805
515.60.2050.1612.550.05131.0115.00.995643.40.3810.860white5.88631428770614
525.60.220.321.20.02429.097.00.988233.20.4613.0571white6.40915352712938
535.60.2350.291.20.04733.0127.00.9913.340.511.071white6.01670985196066
545.60.250.192.40.04942.0166.00.9923.250.4310.460white5.93142946624721
555.60.250.263.60.03718.0115.00.99043.420.512.660white6.19349522560429
565.60.310.371.40.07412.096.00.99543.320.589.250red5.34727294648059
575.60.320.328.30.04332.0105.00.992663.240.4711.260white6.01497835907543
585.60.340.252.50.04647.0182.00.990933.210.411.350white6.00850616738944
595.60.410.241.90.03410.053.00.988153.320.513.571white6.31861482382439
605.60.540.041.70.0495.013.00.99423.720.5811.450red5.40710784845606
615.70.150.283.70.04557.0151.00.99133.220.2711.260white6.15672717917641
625.70.150.283.70.04557.0151.00.99133.220.2711.260white6.15672717917641
635.70.180.224.20.04225.0111.00.9943.350.399.450white5.79248588949076
645.70.210.320.90.03838.0121.00.990743.240.4610.660white6.06951472104481
655.70.220.216.00.04441.0113.00.998623.220.468.960white5.61639729024006
665.70.220.251.10.0597.0175.00.990993.440.6211.160white6.0438356057619
675.70.260.274.10.20173.5189.50.99423.270.389.460white5.66603827180106
685.70.270.169.00.05332.0111.00.994743.360.3710.460white5.82901119979439
695.70.320.52.60.04917.0155.00.99273.220.6410.060white5.76084136305442
705.70.330.321.40.04328.093.00.98973.310.512.360white6.14401021428955
715.70.440.137.00.02528.0173.00.99133.330.4812.560white6.10420948185171
725.70.450.421.10.05161.0197.00.99323.020.49.050white5.54525658351608
735.80.120.211.30.05635.0121.00.99083.320.3311.460white6.17029259742125
745.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.97071957172071
755.80.130.265.10.03919.0103.00.994783.360.479.360white5.76751861773522
765.80.150.315.90.0367.073.00.991523.20.4311.960white6.22821333746455
775.80.170.361.30.03611.070.00.992023.430.6810.471white5.94747487029704
785.80.190.334.20.03849.0133.00.991073.160.4211.371white6.18727023689678
795.80.20.31.50.03121.057.00.991153.440.5511.060white6.06294032850636
805.80.2750.35.40.04341.0149.00.99263.330.4210.871white5.96678968335388
815.80.280.31.50.02631.0114.00.989523.320.612.571white6.22935578808756
825.80.280.352.30.05336.0114.00.99243.280.510.240white5.85367475559536
835.80.290.151.10.02912.083.00.98983.30.411.460white6.18785139249349
845.80.290.271.60.06217.0140.00.991383.230.3511.160white5.96773475918448
855.80.30.121.60.03657.0163.00.992393.380.5910.560white5.84741399196145
865.80.30.333.50.03325.0116.00.990573.20.4411.760white6.14700698402999
875.80.320.22.60.02717.0123.00.989363.360.7813.971white6.28146734348928
885.80.320.384.750.03323.094.00.9913.420.4211.871white6.11748024837823
895.80.330.216.050.04726.0166.00.99763.090.468.950white5.69091312023588
905.80.330.235.00.05329.0106.00.994583.130.529.050white5.64521365124367
915.80.3850.253.70.03138.0122.00.991283.20.6311.260white6.00660445192008
925.80.580.01.50.0233.096.00.989183.290.3812.460white6.09900166471775
935.80.60.01.30.04472.0197.00.992023.560.4310.950white5.6804907093688
945.90.140.21.60.0426.0114.00.991053.250.4511.460white6.15142890948039
955.90.180.281.00.03724.088.00.990943.290.5510.6571white6.10137852534641
965.90.190.267.40.03433.0123.00.9953.490.4210.160white5.80246240662399
975.90.190.370.80.0273.021.00.98973.090.3110.850white6.24544487374567
985.90.20.231.50.03738.093.00.990213.360.4912.060white6.21499116172603
995.90.20.2812.80.03829.0132.00.994263.310.5711.871white6.11641740323228
1005.90.210.237.90.03322.0130.00.99443.380.5910.960white5.89548253914867
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.