
verticapy.set_option¶
- verticapy.set_option(key: str, value: Any | None = None) None ¶
Sets VerticaPy options.
Important
Some options may not be available in VerticaPy 1.0.0. To access all available options, please use VerticaPy 1.0.1 or a higher version.
Parameters¶
- key: str
Option to set, one of the following:
- cache:
[bool] If set to True, vDataFrames save the computed aggregations in-memory.
- colors:
[list] List of colors used to draw the graphics.
- color_style:
[str] Style used to color the graphics, one of the following: “rgb”, “sunset”, “retro”, “shimbg”, “swamp”, “med”, “orchid”, “magenta”, “orange”, “vintage”, “vivid”, “berries”, “refreshing”, “summer”, “tropical”, “india”, “default”.
- count_on:
[bool] If set to
True
, the total number of rows invDataFrame
andTableSample
is computed and displayed in the footer (iffooter_on is True
).
- footer_on:
[bool] If set to
True
,vDataFrame
andTableSample
show a footer that includes information about the displayed rows and columns.
- interactive:
[bool] If set to
True
, VerticaPy outputs are displayed in interactive tables.
- label_separator:
[str] Separator used to separate the query label from the
label_suffix
. The default value is__
.
- label_suffix:
[str] Label suffix to add to VerticaPy’s query labels. It can be useful to track some specific activities. For example: Looking which user runs some specific VerticaPy functions. The default value is
None
.
- max_columns:
[int] Maximum number of columns to display. If the specified value is invalid,
max_columns
is not changed.
- max_rows:
[int] Maximum number of rows to display. If the specified value is invalid,
max_row
is not changed.
- max_cellwidth:
Maximum width of any VerticaPy table’s cell. Can not be lesser than 280. Default: 280
- max_tableheight:
Maximum height of VerticaPy tables. Can not be lesser than 300. Default: 300
- mode:
[str] Display mode for VerticaPy outputs, either:
- full:
VerticaPy regular display mode.
- light:
Minimalist display mode.
- percent_bar:
[bool] If set to
True
, the percent of non-missing values is displayed.
- plotting_lib:
[str] Plotting library used to draw the different graphics. One of the following: plotly | highcharts | matplotlib
- print_info:
[bool] If set to
True
, information is printed each time thevDataFrame
is modified.
- random_state:
[int] Integer used to seed random number generation in VerticaPy.
- save_query_profile:
[bool] If set to
True
, all function calls are stored in the query profile table. This makes it possible to differentiate the VerticaPy logs from the Vertica logs. If set toFalse
, this functionality is deactivated.
- sql_on:
[bool] If set to
True
, displays all SQL queries.
- temp_schema:
[str] Specifies the temporary schema that certain methods / functions use to create intermediate objects, if needed.
- theme:
[str] Theme used to display the VerticaPy objects. One of the following: light | dark | sphinx (only for doc rendering)
- time_on:
[bool] If set to
True
, displays the elasped time for all SQL queries.
- tqdm:
[bool] If set to
True
, a loading bar is displayed when using iterative functions.
- value: object, optional
New value of the option.
Examples¶
Import and load the titanic dataset:
Hint
VerticaPy provides multiple datasets, all of which have loaders in the datasets module.
from verticapy.datasets import load_titanic titanic = load_titanic() display(titanic)
123pclass123survivedAbcAbcsex123age123sibsp123parchAbcticket123fareAbccabinAbcembarkedAbcboat123bodyAbchome.dest1 1 0 female 2.0 1 2 113781 151.55 C22 C26 S [null] [null] Montreal, PQ / Chesterville, ON 2 1 0 male 30.0 1 2 113781 151.55 C22 C26 S [null] 135 Montreal, PQ / Chesterville, ON 3 1 0 female 25.0 1 2 113781 151.55 C22 C26 S [null] [null] Montreal, PQ / Chesterville, ON 4 1 0 male 39.0 0 0 112050 0.0 A36 S [null] [null] Belfast, NI 5 1 0 male 71.0 0 0 PC 17609 49.5042 [null] C [null] 22 Montevideo, Uruguay 6 1 0 male 47.0 1 0 PC 17757 227.525 C62 C64 C [null] 124 New York, NY 7 1 0 male [null] 0 0 PC 17318 25.925 [null] S [null] [null] New York, NY 8 1 0 male 24.0 0 1 PC 17558 247.5208 B58 B60 C [null] [null] Montreal, PQ 9 1 0 male 36.0 0 0 13050 75.2417 C6 C A [null] Winnipeg, MN 10 1 0 male 25.0 0 0 13905 26.0 [null] C [null] 148 San Francisco, CA 11 1 0 male 45.0 0 0 113784 35.5 T S [null] [null] Trenton, NJ 12 1 0 male 42.0 0 0 110489 26.55 D22 S [null] [null] London / Winnipeg, MB 13 1 0 male 41.0 0 0 113054 30.5 A21 S [null] [null] Pomeroy, WA 14 1 0 male 48.0 0 0 PC 17591 50.4958 B10 C [null] 208 Omaha, NE 15 1 0 male [null] 0 0 112379 39.6 [null] C [null] [null] Philadelphia, PA 16 1 0 male 45.0 0 0 113050 26.55 B38 S [null] [null] Washington, DC 17 1 0 male [null] 0 0 113798 31.0 [null] S [null] [null] [null] 18 1 0 male 33.0 0 0 695 5.0 B51 B53 B55 S [null] [null] New York, NY 19 1 0 male 28.0 0 0 113059 47.1 [null] S [null] [null] Montevideo, Uruguay 20 1 0 male 17.0 0 0 113059 47.1 [null] S [null] [null] Montevideo, Uruguay 21 1 0 male 49.0 0 0 19924 26.0 [null] S [null] [null] Ascot, Berkshire / Rochester, NY 22 1 0 male 36.0 1 0 19877 78.85 C46 S [null] 172 Little Onn Hall, Staffs 23 1 0 male 46.0 1 0 W.E.P. 5734 61.175 E31 S [null] [null] Amenia, ND 24 1 0 male [null] 0 0 112051 0.0 [null] S [null] [null] Liverpool, England / Belfast 25 1 0 male 27.0 1 0 13508 136.7792 C89 C [null] [null] Los Angeles, CA 26 1 0 male [null] 0 0 110465 52.0 A14 S [null] [null] Stoughton, MA 27 1 0 male 47.0 0 0 5727 25.5875 E58 S [null] [null] Victoria, BC 28 1 0 male 37.0 1 1 PC 17756 83.1583 E52 C [null] [null] Lakewood, NJ 29 1 0 male [null] 0 0 113791 26.55 [null] S [null] [null] Roachdale, IN 30 1 0 male 70.0 1 1 WE/P 5735 71.0 B22 S [null] 269 Milwaukee, WI 31 1 0 male 39.0 1 0 PC 17599 71.2833 C85 C [null] [null] New York, NY 32 1 0 male 31.0 1 0 F.C. 12750 52.0 B71 S [null] [null] Montreal, PQ 33 1 0 male 50.0 1 0 PC 17761 106.425 C86 C [null] 62 Deephaven, MN / Cedar Rapids, IA 34 1 0 male 39.0 0 0 PC 17580 29.7 A18 C [null] 133 Philadelphia, PA 35 1 0 female 36.0 0 0 PC 17531 31.6792 A29 C [null] [null] New York, NY 36 1 0 male [null] 0 0 PC 17483 221.7792 C95 S [null] [null] [null] 37 1 0 male 30.0 0 0 113051 27.75 C111 C [null] [null] New York, NY 38 1 0 male 19.0 3 2 19950 263.0 C23 C25 C27 S [null] [null] Winnipeg, MB 39 1 0 male 64.0 1 4 19950 263.0 C23 C25 C27 S [null] [null] Winnipeg, MB 40 1 0 male [null] 0 0 113778 26.55 D34 S [null] [null] Westcliff-on-Sea, Essex 41 1 0 male [null] 0 0 112058 0.0 B102 S [null] [null] [null] 42 1 0 male 37.0 1 0 113803 53.1 C123 S [null] [null] Scituate, MA 43 1 0 male 47.0 0 0 111320 38.5 E63 S [null] 275 St Anne's-on-Sea, Lancashire 44 1 0 male 24.0 0 0 PC 17593 79.2 B86 C [null] [null] [null] 45 1 0 male 71.0 0 0 PC 17754 34.6542 A5 C [null] [null] New York, NY 46 1 0 male 38.0 0 1 PC 17582 153.4625 C91 S [null] 147 Winnipeg, MB 47 1 0 male 46.0 0 0 PC 17593 79.2 B82 B84 C [null] [null] New York, NY 48 1 0 male [null] 0 0 113796 42.4 [null] S [null] [null] [null] 49 1 0 male 45.0 1 0 36973 83.475 C83 S [null] [null] New York, NY 50 1 0 male 40.0 0 0 112059 0.0 B94 S [null] 110 [null] 51 1 0 male 55.0 1 1 12749 93.5 B69 S [null] 307 Montreal, PQ 52 1 0 male 42.0 0 0 113038 42.5 B11 S [null] [null] London / Middlesex 53 1 0 male [null] 0 0 17463 51.8625 E46 S [null] [null] Brighton, MA 54 1 0 male 55.0 0 0 680 50.0 C39 S [null] [null] London / Birmingham 55 1 0 male 42.0 1 0 113789 52.0 [null] S [null] 38 New York, NY 56 1 0 male [null] 0 0 PC 17600 30.6958 [null] C 14 [null] New York, NY 57 1 0 female 50.0 0 0 PC 17595 28.7125 C49 C [null] [null] Paris, France New York, NY 58 1 0 male 46.0 0 0 694 26.0 [null] S [null] 80 Bennington, VT 59 1 0 male 50.0 0 0 113044 26.0 E60 S [null] [null] London 60 1 0 male 32.5 0 0 113503 211.5 C132 C [null] 45 [null] 61 1 0 male 58.0 0 0 11771 29.7 B37 C [null] 258 Buffalo, NY 62 1 0 male 41.0 1 0 17464 51.8625 D21 S [null] [null] Southington / Noank, CT 63 1 0 male [null] 0 0 113028 26.55 C124 S [null] [null] Portland, OR 64 1 0 male [null] 0 0 PC 17612 27.7208 [null] C [null] [null] Chicago, IL 65 1 0 male 29.0 0 0 113501 30.0 D6 S [null] 126 Springfield, MA 66 1 0 male 30.0 0 0 113801 45.5 [null] S [null] [null] London / New York, NY 67 1 0 male 30.0 0 0 110469 26.0 C106 S [null] [null] Brockton, MA 68 1 0 male 19.0 1 0 113773 53.1 D30 S [null] [null] New York, NY 69 1 0 male 46.0 0 0 13050 75.2417 C6 C [null] 292 Vancouver, BC 70 1 0 male 54.0 0 0 17463 51.8625 E46 S [null] 175 Dorchester, MA 71 1 0 male 28.0 1 0 PC 17604 82.1708 [null] C [null] [null] New York, NY 72 1 0 male 65.0 0 0 13509 26.55 E38 S [null] 249 East Bridgewater, MA 73 1 0 male 44.0 2 0 19928 90.0 C78 Q [null] 230 Fond du Lac, WI 74 1 0 male 55.0 0 0 113787 30.5 C30 S [null] [null] Montreal, PQ 75 1 0 male 47.0 0 0 113796 42.4 [null] S [null] [null] Washington, DC 76 1 0 male 37.0 0 1 PC 17596 29.7 C118 C [null] [null] Brooklyn, NY 77 1 0 male 58.0 0 2 35273 113.275 D48 C [null] 122 Lexington, MA 78 1 0 male 64.0 0 0 693 26.0 [null] S [null] 263 Isle of Wight, England 79 1 0 male 65.0 0 1 113509 61.9792 B30 C [null] 234 Providence, RI 80 1 0 male 28.5 0 0 PC 17562 27.7208 D43 C [null] 189 ?Havana, Cuba 81 1 0 male [null] 0 0 112052 0.0 [null] S [null] [null] Belfast 82 1 0 male 45.5 0 0 113043 28.5 C124 S [null] 166 Surbiton Hill, Surrey 83 1 0 male 23.0 0 0 12749 93.5 B24 S [null] [null] Montreal, PQ 84 1 0 male 29.0 1 0 113776 66.6 C2 S [null] [null] Isleworth, England 85 1 0 male 18.0 1 0 PC 17758 108.9 C65 C [null] [null] Madrid, Spain 86 1 0 male 47.0 0 0 110465 52.0 C110 S [null] 207 Worcester, MA 87 1 0 male 38.0 0 0 19972 0.0 [null] S [null] [null] Rotterdam, Netherlands 88 1 0 male 22.0 0 0 PC 17760 135.6333 [null] C [null] 232 [null] 89 1 0 male [null] 0 0 PC 17757 227.525 [null] C [null] [null] [null] 90 1 0 male 31.0 0 0 PC 17590 50.4958 A24 S [null] [null] Trenton, NJ 91 1 0 male [null] 0 0 113767 50.0 A32 S [null] [null] Seattle, WA 92 1 0 male 36.0 0 0 13049 40.125 A10 C [null] [null] Winnipeg, MB 93 1 0 male 55.0 1 0 PC 17603 59.4 [null] C [null] [null] New York, NY 94 1 0 male 33.0 0 0 113790 26.55 [null] S [null] 109 London 95 1 0 male 61.0 1 3 PC 17608 262.375 B57 B59 B63 B66 C [null] [null] Haverford, PA / Cooperstown, NY 96 1 0 male 50.0 1 0 13507 55.9 E44 S [null] [null] Duluth, MN 97 1 0 male 56.0 0 0 113792 26.55 [null] S [null] [null] New York, NY 98 1 0 male 56.0 0 0 17764 30.6958 A7 C [null] [null] St James, Long Island, NY 99 1 0 male 24.0 1 0 13695 60.0 C31 S [null] [null] Huntington, WV 100 1 0 male [null] 0 0 113056 26.0 A19 S [null] [null] Streatham, Surrey Rows: 1-100 | Columns: 14Import the set_option function:
from verticapy import set_option
Customize vDataFrame Display Settings¶
Turn on the
count_on
option, which displays the total number of elements in the dataset:set_option("count_on", True) display(titanic)
Warning
Exercise caution when enabling this option, as it may result in decreased performance. VerticaPy will perform calculations to determine the number of elements in a displayed
vDataFrame
, which can have an impact on overall system performance.123pclass123survivedAbcAbcsex123age123sibsp123parchAbcticket123fareAbccabinAbcembarkedAbcboat123bodyAbchome.dest1 1 0 female 2.0 1 2 113781 151.55 C22 C26 S [null] [null] Montreal, PQ / Chesterville, ON 2 1 0 male 30.0 1 2 113781 151.55 C22 C26 S [null] 135 Montreal, PQ / Chesterville, ON 3 1 0 female 25.0 1 2 113781 151.55 C22 C26 S [null] [null] Montreal, PQ / Chesterville, ON 4 1 0 male 39.0 0 0 112050 0.0 A36 S [null] [null] Belfast, NI 5 1 0 male 71.0 0 0 PC 17609 49.5042 [null] C [null] 22 Montevideo, Uruguay 6 1 0 male 47.0 1 0 PC 17757 227.525 C62 C64 C [null] 124 New York, NY 7 1 0 male [null] 0 0 PC 17318 25.925 [null] S [null] [null] New York, NY 8 1 0 male 24.0 0 1 PC 17558 247.5208 B58 B60 C [null] [null] Montreal, PQ 9 1 0 male 36.0 0 0 13050 75.2417 C6 C A [null] Winnipeg, MN 10 1 0 male 25.0 0 0 13905 26.0 [null] C [null] 148 San Francisco, CA 11 1 0 male 45.0 0 0 113784 35.5 T S [null] [null] Trenton, NJ 12 1 0 male 42.0 0 0 110489 26.55 D22 S [null] [null] London / Winnipeg, MB 13 1 0 male 41.0 0 0 113054 30.5 A21 S [null] [null] Pomeroy, WA 14 1 0 male 48.0 0 0 PC 17591 50.4958 B10 C [null] 208 Omaha, NE 15 1 0 male [null] 0 0 112379 39.6 [null] C [null] [null] Philadelphia, PA 16 1 0 male 45.0 0 0 113050 26.55 B38 S [null] [null] Washington, DC 17 1 0 male [null] 0 0 113798 31.0 [null] S [null] [null] [null] 18 1 0 male 33.0 0 0 695 5.0 B51 B53 B55 S [null] [null] New York, NY 19 1 0 male 28.0 0 0 113059 47.1 [null] S [null] [null] Montevideo, Uruguay 20 1 0 male 17.0 0 0 113059 47.1 [null] S [null] [null] Montevideo, Uruguay 21 1 0 male 49.0 0 0 19924 26.0 [null] S [null] [null] Ascot, Berkshire / Rochester, NY 22 1 0 male 36.0 1 0 19877 78.85 C46 S [null] 172 Little Onn Hall, Staffs 23 1 0 male 46.0 1 0 W.E.P. 5734 61.175 E31 S [null] [null] Amenia, ND 24 1 0 male [null] 0 0 112051 0.0 [null] S [null] [null] Liverpool, England / Belfast 25 1 0 male 27.0 1 0 13508 136.7792 C89 C [null] [null] Los Angeles, CA 26 1 0 male [null] 0 0 110465 52.0 A14 S [null] [null] Stoughton, MA 27 1 0 male 47.0 0 0 5727 25.5875 E58 S [null] [null] Victoria, BC 28 1 0 male 37.0 1 1 PC 17756 83.1583 E52 C [null] [null] Lakewood, NJ 29 1 0 male [null] 0 0 113791 26.55 [null] S [null] [null] Roachdale, IN 30 1 0 male 70.0 1 1 WE/P 5735 71.0 B22 S [null] 269 Milwaukee, WI 31 1 0 male 39.0 1 0 PC 17599 71.2833 C85 C [null] [null] New York, NY 32 1 0 male 31.0 1 0 F.C. 12750 52.0 B71 S [null] [null] Montreal, PQ 33 1 0 male 50.0 1 0 PC 17761 106.425 C86 C [null] 62 Deephaven, MN / Cedar Rapids, IA 34 1 0 male 39.0 0 0 PC 17580 29.7 A18 C [null] 133 Philadelphia, PA 35 1 0 female 36.0 0 0 PC 17531 31.6792 A29 C [null] [null] New York, NY 36 1 0 male [null] 0 0 PC 17483 221.7792 C95 S [null] [null] [null] 37 1 0 male 30.0 0 0 113051 27.75 C111 C [null] [null] New York, NY 38 1 0 male 19.0 3 2 19950 263.0 C23 C25 C27 S [null] [null] Winnipeg, MB 39 1 0 male 64.0 1 4 19950 263.0 C23 C25 C27 S [null] [null] Winnipeg, MB 40 1 0 male [null] 0 0 113778 26.55 D34 S [null] [null] Westcliff-on-Sea, Essex 41 1 0 male [null] 0 0 112058 0.0 B102 S [null] [null] [null] 42 1 0 male 37.0 1 0 113803 53.1 C123 S [null] [null] Scituate, MA 43 1 0 male 47.0 0 0 111320 38.5 E63 S [null] 275 St Anne's-on-Sea, Lancashire 44 1 0 male 24.0 0 0 PC 17593 79.2 B86 C [null] [null] [null] 45 1 0 male 71.0 0 0 PC 17754 34.6542 A5 C [null] [null] New York, NY 46 1 0 male 38.0 0 1 PC 17582 153.4625 C91 S [null] 147 Winnipeg, MB 47 1 0 male 46.0 0 0 PC 17593 79.2 B82 B84 C [null] [null] New York, NY 48 1 0 male [null] 0 0 113796 42.4 [null] S [null] [null] [null] 49 1 0 male 45.0 1 0 36973 83.475 C83 S [null] [null] New York, NY 50 1 0 male 40.0 0 0 112059 0.0 B94 S [null] 110 [null] 51 1 0 male 55.0 1 1 12749 93.5 B69 S [null] 307 Montreal, PQ 52 1 0 male 42.0 0 0 113038 42.5 B11 S [null] [null] London / Middlesex 53 1 0 male [null] 0 0 17463 51.8625 E46 S [null] [null] Brighton, MA 54 1 0 male 55.0 0 0 680 50.0 C39 S [null] [null] London / Birmingham 55 1 0 male 42.0 1 0 113789 52.0 [null] S [null] 38 New York, NY 56 1 0 male [null] 0 0 PC 17600 30.6958 [null] C 14 [null] New York, NY 57 1 0 female 50.0 0 0 PC 17595 28.7125 C49 C [null] [null] Paris, France New York, NY 58 1 0 male 46.0 0 0 694 26.0 [null] S [null] 80 Bennington, VT 59 1 0 male 50.0 0 0 113044 26.0 E60 S [null] [null] London 60 1 0 male 32.5 0 0 113503 211.5 C132 C [null] 45 [null] 61 1 0 male 58.0 0 0 11771 29.7 B37 C [null] 258 Buffalo, NY 62 1 0 male 41.0 1 0 17464 51.8625 D21 S [null] [null] Southington / Noank, CT 63 1 0 male [null] 0 0 113028 26.55 C124 S [null] [null] Portland, OR 64 1 0 male [null] 0 0 PC 17612 27.7208 [null] C [null] [null] Chicago, IL 65 1 0 male 29.0 0 0 113501 30.0 D6 S [null] 126 Springfield, MA 66 1 0 male 30.0 0 0 113801 45.5 [null] S [null] [null] London / New York, NY 67 1 0 male 30.0 0 0 110469 26.0 C106 S [null] [null] Brockton, MA 68 1 0 male 19.0 1 0 113773 53.1 D30 S [null] [null] New York, NY 69 1 0 male 46.0 0 0 13050 75.2417 C6 C [null] 292 Vancouver, BC 70 1 0 male 54.0 0 0 17463 51.8625 E46 S [null] 175 Dorchester, MA 71 1 0 male 28.0 1 0 PC 17604 82.1708 [null] C [null] [null] New York, NY 72 1 0 male 65.0 0 0 13509 26.55 E38 S [null] 249 East Bridgewater, MA 73 1 0 male 44.0 2 0 19928 90.0 C78 Q [null] 230 Fond du Lac, WI 74 1 0 male 55.0 0 0 113787 30.5 C30 S [null] [null] Montreal, PQ 75 1 0 male 47.0 0 0 113796 42.4 [null] S [null] [null] Washington, DC 76 1 0 male 37.0 0 1 PC 17596 29.7 C118 C [null] [null] Brooklyn, NY 77 1 0 male 58.0 0 2 35273 113.275 D48 C [null] 122 Lexington, MA 78 1 0 male 64.0 0 0 693 26.0 [null] S [null] 263 Isle of Wight, England 79 1 0 male 65.0 0 1 113509 61.9792 B30 C [null] 234 Providence, RI 80 1 0 male 28.5 0 0 PC 17562 27.7208 D43 C [null] 189 ?Havana, Cuba 81 1 0 male [null] 0 0 112052 0.0 [null] S [null] [null] Belfast 82 1 0 male 45.5 0 0 113043 28.5 C124 S [null] 166 Surbiton Hill, Surrey 83 1 0 male 23.0 0 0 12749 93.5 B24 S [null] [null] Montreal, PQ 84 1 0 male 29.0 1 0 113776 66.6 C2 S [null] [null] Isleworth, England 85 1 0 male 18.0 1 0 PC 17758 108.9 C65 C [null] [null] Madrid, Spain 86 1 0 male 47.0 0 0 110465 52.0 C110 S [null] 207 Worcester, MA 87 1 0 male 38.0 0 0 19972 0.0 [null] S [null] [null] Rotterdam, Netherlands 88 1 0 male 22.0 0 0 PC 17760 135.6333 [null] C [null] 232 [null] 89 1 0 male [null] 0 0 PC 17757 227.525 [null] C [null] [null] [null] 90 1 0 male 31.0 0 0 PC 17590 50.4958 A24 S [null] [null] Trenton, NJ 91 1 0 male [null] 0 0 113767 50.0 A32 S [null] [null] Seattle, WA 92 1 0 male 36.0 0 0 13049 40.125 A10 C [null] [null] Winnipeg, MB 93 1 0 male 55.0 1 0 PC 17603 59.4 [null] C [null] [null] New York, NY 94 1 0 male 33.0 0 0 113790 26.55 [null] S [null] 109 London 95 1 0 male 61.0 1 3 PC 17608 262.375 B57 B59 B63 B66 C [null] [null] Haverford, PA / Cooperstown, NY 96 1 0 male 50.0 1 0 13507 55.9 E44 S [null] [null] Duluth, MN 97 1 0 male 56.0 0 0 113792 26.55 [null] S [null] [null] New York, NY 98 1 0 male 56.0 0 0 17764 30.6958 A7 C [null] [null] St James, Long Island, NY 99 1 0 male 24.0 1 0 13695 60.0 C31 S [null] [null] Huntington, WV 100 1 0 male [null] 0 0 113056 26.0 A19 S [null] [null] Streatham, Surrey Rows: 1-100 of 1234 | Columns: 14Turn off the display footer:
set_option("footer_on", False) display(titanic)
123pclass123survivedAbcAbcsex123age123sibsp123parchAbcticket123fareAbccabinAbcembarkedAbcboat123bodyAbchome.dest1 1 0 female 2.0 1 2 113781 151.55 C22 C26 S [null] [null] Montreal, PQ / Chesterville, ON 2 1 0 male 30.0 1 2 113781 151.55 C22 C26 S [null] 135 Montreal, PQ / Chesterville, ON 3 1 0 female 25.0 1 2 113781 151.55 C22 C26 S [null] [null] Montreal, PQ / Chesterville, ON 4 1 0 male 39.0 0 0 112050 0.0 A36 S [null] [null] Belfast, NI 5 1 0 male 71.0 0 0 PC 17609 49.5042 [null] C [null] 22 Montevideo, Uruguay 6 1 0 male 47.0 1 0 PC 17757 227.525 C62 C64 C [null] 124 New York, NY 7 1 0 male [null] 0 0 PC 17318 25.925 [null] S [null] [null] New York, NY 8 1 0 male 24.0 0 1 PC 17558 247.5208 B58 B60 C [null] [null] Montreal, PQ 9 1 0 male 36.0 0 0 13050 75.2417 C6 C A [null] Winnipeg, MN 10 1 0 male 25.0 0 0 13905 26.0 [null] C [null] 148 San Francisco, CA 11 1 0 male 45.0 0 0 113784 35.5 T S [null] [null] Trenton, NJ 12 1 0 male 42.0 0 0 110489 26.55 D22 S [null] [null] London / Winnipeg, MB 13 1 0 male 41.0 0 0 113054 30.5 A21 S [null] [null] Pomeroy, WA 14 1 0 male 48.0 0 0 PC 17591 50.4958 B10 C [null] 208 Omaha, NE 15 1 0 male [null] 0 0 112379 39.6 [null] C [null] [null] Philadelphia, PA 16 1 0 male 45.0 0 0 113050 26.55 B38 S [null] [null] Washington, DC 17 1 0 male [null] 0 0 113798 31.0 [null] S [null] [null] [null] 18 1 0 male 33.0 0 0 695 5.0 B51 B53 B55 S [null] [null] New York, NY 19 1 0 male 28.0 0 0 113059 47.1 [null] S [null] [null] Montevideo, Uruguay 20 1 0 male 17.0 0 0 113059 47.1 [null] S [null] [null] Montevideo, Uruguay 21 1 0 male 49.0 0 0 19924 26.0 [null] S [null] [null] Ascot, Berkshire / Rochester, NY 22 1 0 male 36.0 1 0 19877 78.85 C46 S [null] 172 Little Onn Hall, Staffs 23 1 0 male 46.0 1 0 W.E.P. 5734 61.175 E31 S [null] [null] Amenia, ND 24 1 0 male [null] 0 0 112051 0.0 [null] S [null] [null] Liverpool, England / Belfast 25 1 0 male 27.0 1 0 13508 136.7792 C89 C [null] [null] Los Angeles, CA 26 1 0 male [null] 0 0 110465 52.0 A14 S [null] [null] Stoughton, MA 27 1 0 male 47.0 0 0 5727 25.5875 E58 S [null] [null] Victoria, BC 28 1 0 male 37.0 1 1 PC 17756 83.1583 E52 C [null] [null] Lakewood, NJ 29 1 0 male [null] 0 0 113791 26.55 [null] S [null] [null] Roachdale, IN 30 1 0 male 70.0 1 1 WE/P 5735 71.0 B22 S [null] 269 Milwaukee, WI 31 1 0 male 39.0 1 0 PC 17599 71.2833 C85 C [null] [null] New York, NY 32 1 0 male 31.0 1 0 F.C. 12750 52.0 B71 S [null] [null] Montreal, PQ 33 1 0 male 50.0 1 0 PC 17761 106.425 C86 C [null] 62 Deephaven, MN / Cedar Rapids, IA 34 1 0 male 39.0 0 0 PC 17580 29.7 A18 C [null] 133 Philadelphia, PA 35 1 0 female 36.0 0 0 PC 17531 31.6792 A29 C [null] [null] New York, NY 36 1 0 male [null] 0 0 PC 17483 221.7792 C95 S [null] [null] [null] 37 1 0 male 30.0 0 0 113051 27.75 C111 C [null] [null] New York, NY 38 1 0 male 19.0 3 2 19950 263.0 C23 C25 C27 S [null] [null] Winnipeg, MB 39 1 0 male 64.0 1 4 19950 263.0 C23 C25 C27 S [null] [null] Winnipeg, MB 40 1 0 male [null] 0 0 113778 26.55 D34 S [null] [null] Westcliff-on-Sea, Essex 41 1 0 male [null] 0 0 112058 0.0 B102 S [null] [null] [null] 42 1 0 male 37.0 1 0 113803 53.1 C123 S [null] [null] Scituate, MA 43 1 0 male 47.0 0 0 111320 38.5 E63 S [null] 275 St Anne's-on-Sea, Lancashire 44 1 0 male 24.0 0 0 PC 17593 79.2 B86 C [null] [null] [null] 45 1 0 male 71.0 0 0 PC 17754 34.6542 A5 C [null] [null] New York, NY 46 1 0 male 38.0 0 1 PC 17582 153.4625 C91 S [null] 147 Winnipeg, MB 47 1 0 male 46.0 0 0 PC 17593 79.2 B82 B84 C [null] [null] New York, NY 48 1 0 male [null] 0 0 113796 42.4 [null] S [null] [null] [null] 49 1 0 male 45.0 1 0 36973 83.475 C83 S [null] [null] New York, NY 50 1 0 male 40.0 0 0 112059 0.0 B94 S [null] 110 [null] 51 1 0 male 55.0 1 1 12749 93.5 B69 S [null] 307 Montreal, PQ 52 1 0 male 42.0 0 0 113038 42.5 B11 S [null] [null] London / Middlesex 53 1 0 male [null] 0 0 17463 51.8625 E46 S [null] [null] Brighton, MA 54 1 0 male 55.0 0 0 680 50.0 C39 S [null] [null] London / Birmingham 55 1 0 male 42.0 1 0 113789 52.0 [null] S [null] 38 New York, NY 56 1 0 male [null] 0 0 PC 17600 30.6958 [null] C 14 [null] New York, NY 57 1 0 female 50.0 0 0 PC 17595 28.7125 C49 C [null] [null] Paris, France New York, NY 58 1 0 male 46.0 0 0 694 26.0 [null] S [null] 80 Bennington, VT 59 1 0 male 50.0 0 0 113044 26.0 E60 S [null] [null] London 60 1 0 male 32.5 0 0 113503 211.5 C132 C [null] 45 [null] 61 1 0 male 58.0 0 0 11771 29.7 B37 C [null] 258 Buffalo, NY 62 1 0 male 41.0 1 0 17464 51.8625 D21 S [null] [null] Southington / Noank, CT 63 1 0 male [null] 0 0 113028 26.55 C124 S [null] [null] Portland, OR 64 1 0 male [null] 0 0 PC 17612 27.7208 [null] C [null] [null] Chicago, IL 65 1 0 male 29.0 0 0 113501 30.0 D6 S [null] 126 Springfield, MA 66 1 0 male 30.0 0 0 113801 45.5 [null] S [null] [null] London / New York, NY 67 1 0 male 30.0 0 0 110469 26.0 C106 S [null] [null] Brockton, MA 68 1 0 male 19.0 1 0 113773 53.1 D30 S [null] [null] New York, NY 69 1 0 male 46.0 0 0 13050 75.2417 C6 C [null] 292 Vancouver, BC 70 1 0 male 54.0 0 0 17463 51.8625 E46 S [null] 175 Dorchester, MA 71 1 0 male 28.0 1 0 PC 17604 82.1708 [null] C [null] [null] New York, NY 72 1 0 male 65.0 0 0 13509 26.55 E38 S [null] 249 East Bridgewater, MA 73 1 0 male 44.0 2 0 19928 90.0 C78 Q [null] 230 Fond du Lac, WI 74 1 0 male 55.0 0 0 113787 30.5 C30 S [null] [null] Montreal, PQ 75 1 0 male 47.0 0 0 113796 42.4 [null] S [null] [null] Washington, DC 76 1 0 male 37.0 0 1 PC 17596 29.7 C118 C [null] [null] Brooklyn, NY 77 1 0 male 58.0 0 2 35273 113.275 D48 C [null] 122 Lexington, MA 78 1 0 male 64.0 0 0 693 26.0 [null] S [null] 263 Isle of Wight, England 79 1 0 male 65.0 0 1 113509 61.9792 B30 C [null] 234 Providence, RI 80 1 0 male 28.5 0 0 PC 17562 27.7208 D43 C [null] 189 ?Havana, Cuba 81 1 0 male [null] 0 0 112052 0.0 [null] S [null] [null] Belfast 82 1 0 male 45.5 0 0 113043 28.5 C124 S [null] 166 Surbiton Hill, Surrey 83 1 0 male 23.0 0 0 12749 93.5 B24 S [null] [null] Montreal, PQ 84 1 0 male 29.0 1 0 113776 66.6 C2 S [null] [null] Isleworth, England 85 1 0 male 18.0 1 0 PC 17758 108.9 C65 C [null] [null] Madrid, Spain 86 1 0 male 47.0 0 0 110465 52.0 C110 S [null] 207 Worcester, MA 87 1 0 male 38.0 0 0 19972 0.0 [null] S [null] [null] Rotterdam, Netherlands 88 1 0 male 22.0 0 0 PC 17760 135.6333 [null] C [null] 232 [null] 89 1 0 male [null] 0 0 PC 17757 227.525 [null] C [null] [null] [null] 90 1 0 male 31.0 0 0 PC 17590 50.4958 A24 S [null] [null] Trenton, NJ 91 1 0 male [null] 0 0 113767 50.0 A32 S [null] [null] Seattle, WA 92 1 0 male 36.0 0 0 13049 40.125 A10 C [null] [null] Winnipeg, MB 93 1 0 male 55.0 1 0 PC 17603 59.4 [null] C [null] [null] New York, NY 94 1 0 male 33.0 0 0 113790 26.55 [null] S [null] 109 London 95 1 0 male 61.0 1 3 PC 17608 262.375 B57 B59 B63 B66 C [null] [null] Haverford, PA / Cooperstown, NY 96 1 0 male 50.0 1 0 13507 55.9 E44 S [null] [null] Duluth, MN 97 1 0 male 56.0 0 0 113792 26.55 [null] S [null] [null] New York, NY 98 1 0 male 56.0 0 0 17764 30.6958 A7 C [null] [null] St James, Long Island, NY 99 1 0 male 24.0 1 0 13695 60.0 C31 S [null] [null] Huntington, WV 100 1 0 male [null] 0 0 113056 26.0 A19 S [null] [null] Streatham, Surrey Sets the maximum number of columns displayed:
Note
By setting this parameter, we retrieve fewer elements from the database, resulting in faster visualization.
set_option("max_columns", 3) display(titanic)
123pclass... 123survivedAbchome.dest1 1 ... 0 Montreal, PQ / Chesterville, ON 2 1 ... 0 Montreal, PQ / Chesterville, ON 3 1 ... 0 Montreal, PQ / Chesterville, ON 4 1 ... 0 Belfast, NI 5 1 ... 0 Montevideo, Uruguay 6 1 ... 0 New York, NY 7 1 ... 0 New York, NY 8 1 ... 0 Montreal, PQ 9 1 ... 0 Winnipeg, MN 10 1 ... 0 San Francisco, CA 11 1 ... 0 Trenton, NJ 12 1 ... 0 London / Winnipeg, MB 13 1 ... 0 Pomeroy, WA 14 1 ... 0 Omaha, NE 15 1 ... 0 Philadelphia, PA 16 1 ... 0 Washington, DC 17 1 ... 0 [null] 18 1 ... 0 New York, NY 19 1 ... 0 Montevideo, Uruguay 20 1 ... 0 Montevideo, Uruguay 21 1 ... 0 Ascot, Berkshire / Rochester, NY 22 1 ... 0 Little Onn Hall, Staffs 23 1 ... 0 Amenia, ND 24 1 ... 0 Liverpool, England / Belfast 25 1 ... 0 Los Angeles, CA 26 1 ... 0 Stoughton, MA 27 1 ... 0 Victoria, BC 28 1 ... 0 Lakewood, NJ 29 1 ... 0 Roachdale, IN 30 1 ... 0 Milwaukee, WI 31 1 ... 0 New York, NY 32 1 ... 0 Montreal, PQ 33 1 ... 0 Deephaven, MN / Cedar Rapids, IA 34 1 ... 0 Philadelphia, PA 35 1 ... 0 New York, NY 36 1 ... 0 [null] 37 1 ... 0 New York, NY 38 1 ... 0 Winnipeg, MB 39 1 ... 0 Winnipeg, MB 40 1 ... 0 Westcliff-on-Sea, Essex 41 1 ... 0 [null] 42 1 ... 0 Scituate, MA 43 1 ... 0 St Anne's-on-Sea, Lancashire 44 1 ... 0 [null] 45 1 ... 0 New York, NY 46 1 ... 0 Winnipeg, MB 47 1 ... 0 New York, NY 48 1 ... 0 [null] 49 1 ... 0 New York, NY 50 1 ... 0 [null] 51 1 ... 0 Montreal, PQ 52 1 ... 0 London / Middlesex 53 1 ... 0 Brighton, MA 54 1 ... 0 London / Birmingham 55 1 ... 0 New York, NY 56 1 ... 0 New York, NY 57 1 ... 0 Paris, France New York, NY 58 1 ... 0 Bennington, VT 59 1 ... 0 London 60 1 ... 0 [null] 61 1 ... 0 Buffalo, NY 62 1 ... 0 Southington / Noank, CT 63 1 ... 0 Portland, OR 64 1 ... 0 Chicago, IL 65 1 ... 0 Springfield, MA 66 1 ... 0 London / New York, NY 67 1 ... 0 Brockton, MA 68 1 ... 0 New York, NY 69 1 ... 0 Vancouver, BC 70 1 ... 0 Dorchester, MA 71 1 ... 0 New York, NY 72 1 ... 0 East Bridgewater, MA 73 1 ... 0 Fond du Lac, WI 74 1 ... 0 Montreal, PQ 75 1 ... 0 Washington, DC 76 1 ... 0 Brooklyn, NY 77 1 ... 0 Lexington, MA 78 1 ... 0 Isle of Wight, England 79 1 ... 0 Providence, RI 80 1 ... 0 ?Havana, Cuba 81 1 ... 0 Belfast 82 1 ... 0 Surbiton Hill, Surrey 83 1 ... 0 Montreal, PQ 84 1 ... 0 Isleworth, England 85 1 ... 0 Madrid, Spain 86 1 ... 0 Worcester, MA 87 1 ... 0 Rotterdam, Netherlands 88 1 ... 0 [null] 89 1 ... 0 [null] 90 1 ... 0 Trenton, NJ 91 1 ... 0 Seattle, WA 92 1 ... 0 Winnipeg, MB 93 1 ... 0 New York, NY 94 1 ... 0 London 95 1 ... 0 Haverford, PA / Cooperstown, NY 96 1 ... 0 Duluth, MN 97 1 ... 0 New York, NY 98 1 ... 0 St James, Long Island, NY 99 1 ... 0 Huntington, WV 100 1 ... 0 Streatham, Surrey Sets the maximum number of rows displayed:
set_option("max_rows", 5) display(titanic)
Warning
Exercise caution when using high values for
max_rows
andmax_columns
options, as it may lead to an excessive amount of data being loaded into memory. This can potentially slow down your notebook’s performance.123pclass... 123survivedAbchome.dest1 1 ... 0 Montreal, PQ / Chesterville, ON 2 1 ... 0 Montreal, PQ / Chesterville, ON 3 1 ... 0 Montreal, PQ / Chesterville, ON 4 1 ... 0 Belfast, NI 5 1 ... 0 Montevideo, Uruguay Sets the display to light mode:
set_option("mode", "light") display(titanic)
Hint
The light mode option streamlines the display of
vDataFrame
, creating a more minimalistic appearance that can enhance the fluidity of your notebook.pclass ... survived home.dest 1 1 ... 0 Montreal, PQ / Chesterville, ON 2 1 ... 0 Montreal, PQ / Chesterville, ON 3 1 ... 0 Montreal, PQ / Chesterville, ON 4 1 ... 0 Belfast, NI 5 1 ... 0 Montevideo, Uruguay Sets the display to full mode:
set_option("mode", "full") display(titanic)
123pclass... 123survivedAbchome.dest1 1 ... 0 Montreal, PQ / Chesterville, ON 2 1 ... 0 Montreal, PQ / Chesterville, ON 3 1 ... 0 Montreal, PQ / Chesterville, ON 4 1 ... 0 Belfast, NI 5 1 ... 0 Montevideo, Uruguay Turn on the missing values percent bar:
set_option("percent_bar", True) display(titanic)
123pclass100%... 123survived100%Abchome.dest57%1 1 ... 0 Montreal, PQ / Chesterville, ON 2 1 ... 0 Montreal, PQ / Chesterville, ON 3 1 ... 0 Montreal, PQ / Chesterville, ON 4 1 ... 0 Belfast, NI 5 1 ... 0 Montevideo, Uruguay SQL Generation and Execution Times¶
Displays the queries and their execution times:
Note
Vertica sometimes caches the SQL query, resulting in no displayed SQL.
set_option("sql_on", True) set_option("time_on", True) titanic["age"].max()
Computing the different aggregations.
SELECT /+LABEL(‘vDataframe.aggregate’)/ MAX(“age”) FROM “public”.”titanic” LIMIT 1
Execution: 0.072s
80.0
Hides the queries and execution times:
set_option("sql_on", False) set_option("time_on", False)
Seed Randomness¶
Sets the seed for the random number generator and seeds the random state:
set_option("random_state", 2) titanic.sample(0.1).shape() Out[4]: (1, 14)
Change general API colors¶
Change the graphic colors:
Important
The API will exclusively use these colors for drawing graphics.
set_option("colors", ["blue", "red"]) titanic.hist(["pclass", "survived"]) Out[6]: <Axes: ylabel='density'>