Loading...

verticapy.machine_learning.vertica.ensemble.XGBRegressor.predict

XGBRegressor.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 148.02547 | 6.79058|21.79864 | 0.00000
 fixed_acidity  |  0.14160  | 0.01236|11.45689 | 0.00000
volatile_acidity| -0.73218  | 0.08695|-8.42037 | 0.00000
  citric_acid   | -0.09177  | 0.09468|-0.96924 | 0.33247
 residual_sugar |  0.04328  | 0.00383|11.31352 | 0.00000
   chlorides    | -0.23843  | 0.38527|-0.61887 | 0.53603
    density     |-143.92796 | 6.90756|-20.83629| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_f9ab1b6455a311ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_f9bbf4d455a311ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5196 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.40.320.394.30.0331.0127.00.989043.460.3612.881white6.20684728809047
24.40.460.12.80.02431.0111.00.988163.480.3413.160white6.1941286454641
34.50.190.210.950.03389.0159.00.993323.340.428.050white5.57100741255135
44.70.4550.181.90.03633.0106.00.987463.210.8314.071white6.29186834342894
54.70.670.091.00.025.09.00.987223.30.3413.650white6.14211911507917
64.90.3450.341.00.06832.0143.00.991383.240.410.150white5.77526940829662
75.00.2350.2711.750.0334.0118.00.99543.070.59.460white5.77207606507596
85.00.240.195.00.04317.0101.00.994383.670.5710.050white5.6273524184578
95.00.330.184.60.03240.0124.00.991143.180.411.060white6.01401334483396
105.00.350.257.80.03124.0116.00.992413.390.411.360white5.94887837393534
115.00.40.54.30.04629.080.00.99023.490.6613.660red6.05236738012238
125.01.020.041.40.04541.085.00.99383.750.4810.540red4.99722956187955
135.10.30.32.30.04840.0150.00.989443.290.4612.260white6.18045510812939
145.20.240.453.80.02721.0128.00.9923.550.4911.281white5.92624563404391
155.20.250.231.40.04720.077.00.990013.320.6211.450white6.11689882925313
165.20.280.291.10.02818.069.00.991683.240.5410.060white5.84061536455133
175.20.360.021.60.03124.0104.00.98963.440.3512.260white6.12711098966014
185.20.3650.0813.50.04137.0142.00.9973.460.399.960white5.56547383743901
195.20.60.077.00.04433.0147.00.99443.330.589.750white5.48653565162437
205.30.210.290.70.02811.066.00.992153.30.49.850white5.82107115888903
215.30.30.21.10.07748.0166.00.99443.30.548.740white5.44522367271864
225.30.360.276.30.02840.0132.00.991863.370.411.660white5.99716326429223
235.30.430.111.10.0296.051.00.990763.510.4811.240white5.89364228391082
245.30.470.112.20.04816.089.00.991823.540.8813.671red5.75486474578685
255.30.5850.077.10.04434.0145.00.99453.340.579.760white5.50161300760678
265.30.7150.191.50.1617.062.00.993953.620.6111.050red5.20433837029842
275.40.2050.1612.550.05131.0115.00.995643.40.3810.860white5.85584625968568
285.40.220.291.20.04569.0152.00.991783.760.6311.071white5.89874724438434
295.40.220.356.50.02926.087.00.990923.290.4412.571white6.25019541954981
305.40.240.182.30.0522.0145.00.992073.240.4610.350white5.89887006204009
315.40.290.381.20.02931.0132.00.988953.280.3612.460white6.25036700470091
325.40.4150.191.60.03927.088.00.992653.540.4110.071white5.65867326665682
335.40.530.162.70.03634.0128.00.988563.20.5313.281white6.214210020303
345.40.740.01.20.04116.046.00.992584.010.5912.560red5.43043976655829
355.50.120.331.00.03823.0131.00.991643.250.459.850white5.99561784310117
365.50.160.224.50.0330.0102.00.99383.240.369.460white5.81891316218091
375.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white6.24450990631095
385.50.180.225.50.03710.086.00.991563.460.4412.250white6.16827497427201
395.50.30.251.90.02933.0118.00.989723.360.6612.560white6.18860330553113
405.50.3150.382.60.03310.069.00.99093.120.5910.860white6.02519533024284
415.60.150.265.550.05151.0139.00.993363.470.511.060white5.94048496901053
425.60.150.315.30.0388.079.00.99233.30.3910.560white6.08074094830189
435.60.1750.290.80.04320.067.00.991123.280.489.960white6.03817406378627
445.60.190.261.40.0312.076.00.99053.250.3710.971white6.14824477571861
455.60.190.474.50.0319.0112.00.99223.560.4511.260white6.01845099044428
465.60.210.41.30.04181.0147.00.99013.220.9511.681white6.17137485666964
475.60.220.321.20.02429.097.00.988233.20.4613.0571white6.44026543708082
485.60.2250.249.80.05459.0140.00.995453.170.3910.260white5.76980418485709
495.60.250.263.60.03718.0115.00.99043.420.512.660white6.21224460018232
505.60.260.265.70.03112.080.00.99233.250.3810.850white6.02376929224209
515.60.260.511.40.02925.093.00.994283.230.4910.560white5.9639163795417
525.60.270.370.90.02511.049.00.988453.290.3313.160white6.35418306655959
535.60.280.273.90.04352.0158.00.992023.350.4410.771white5.96775052247244
545.60.290.050.80.03811.030.00.99243.360.359.250white5.79296222182757
555.60.310.7813.90.07423.092.00.996773.390.4810.560red5.64069232295722
565.60.350.46.30.02223.0174.00.99223.540.511.671white5.98753032040671
575.60.420.342.40.02234.097.00.989153.220.3812.871white6.21198906077268
585.60.660.02.50.0667.015.00.992563.520.5812.950red5.57050990897838
595.70.120.265.50.03421.099.00.993243.090.579.960white5.99577105970246
605.70.140.35.40.04526.0105.00.994693.320.459.350white5.76181106168843
615.70.150.283.70.04557.0151.00.99133.220.2711.260white6.1706717116661
625.70.150.4711.40.03549.0128.00.994563.030.3410.581white6.01963818543911
635.70.20.2413.80.04744.0112.00.998372.970.668.860white5.55677071510155
645.70.210.251.10.03526.081.00.99023.310.5211.460white6.17768241459061
655.70.210.320.90.03838.0121.00.990743.240.4610.660white6.08416723885691
665.70.220.216.00.04441.0113.00.998623.220.468.960white5.60573771923202
675.70.220.216.00.04441.0113.00.998623.220.468.960white5.60573771923202
685.70.220.2216.650.04439.0110.00.998553.240.489.060white5.64210655616952
695.70.220.2216.650.04439.0110.00.998553.240.489.060white5.64210655616952
705.70.230.257.950.04216.0108.00.994863.440.6110.360white5.78710420088834
715.70.2450.331.10.04928.0150.00.99273.130.429.350white5.78155705898914
725.70.250.2711.50.0424.0120.00.994113.330.3110.860white6.03267694831808
735.70.280.2417.50.04460.0167.00.99893.310.449.450white5.58275028209451
745.70.290.167.90.04448.0197.00.995123.210.369.450white5.71137075244974
755.70.360.344.20.02621.077.00.99073.410.4511.960white6.12393374028346
765.70.390.254.90.03349.0113.00.989663.260.5813.171white6.28853651783501
775.70.450.421.10.05161.0197.00.99323.020.49.050white5.55076133427823
785.80.150.280.80.03743.0127.00.991983.240.519.350white5.96336855273358
795.80.150.315.90.0367.073.00.991523.20.4311.960white6.24776694433095
805.80.150.321.20.03714.0119.00.991373.190.510.260white6.06480423186323
815.80.150.491.10.04821.098.00.99293.190.489.250white5.82204386875796
825.80.170.341.80.04596.0170.00.990353.380.911.881white6.21918989737335
835.80.190.241.30.04438.0128.00.993623.770.610.650white5.72167919497346
845.80.190.2510.80.04233.0124.00.996463.220.419.260white5.72360218958272
855.80.20.161.40.04244.099.00.989123.230.3712.260white6.37417898898394
865.80.20.271.40.03112.077.00.99053.250.3610.971white6.16808683696726
875.80.220.251.50.02421.0109.00.992343.370.5810.460white5.89644780357213
885.80.220.31.10.04736.0131.00.9923.260.4510.450white5.9180008134978
895.80.230.211.50.04421.0110.00.991383.30.5711.060white6.02619894293844
905.80.250.2413.30.04441.0137.00.99723.340.429.550white5.68179505694098
915.80.250.2811.10.05645.0175.00.997553.420.439.550white5.52968190434038
925.80.260.181.20.03140.0114.00.99083.420.411.071white6.0805817748747
935.80.260.291.00.04235.0101.00.990443.360.4811.471white6.11102366256591
945.80.270.2712.30.04555.0170.00.99723.280.429.360white5.62088442671694
955.80.270.41.20.07647.0130.00.991853.130.4510.360white5.89121770456921
965.80.290.212.60.02512.0120.00.98943.390.7914.071white6.31937923374545
975.80.30.096.30.04236.0138.00.993823.150.489.750white5.84297467826724
985.80.3150.1919.40.03128.0106.00.997042.970.410.5560white5.92890185386878
995.80.320.22.60.02717.0123.00.989363.360.7813.971white6.30361190054361
1005.80.350.293.20.03441.0151.00.99123.350.5811.633333333333371white6.03285664168817
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.