
verticapy.machine_learning.vertica.ensemble.XGBRegressor.predict¶
- XGBRegressor.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame ¶
Predicts using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
andSELECT 1
are invalid.- X: SQLColumns, optional
list
of the columns used to deploy the models. If empty, the model predictors are used.- name: str, optional
Name of the added :py:class`vDataColumn`. If empty, a name is generated.
- inplace: bool, optional
If set to True, the prediction is added to the :py:class`vDataFrame`.
Returns¶
- vDataFrame
the input object.
Examples¶
We import
verticapy
:import verticapy as vp
For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Divide your dataset into training and testing subsets.
data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Let’s import the model:
from verticapy.machine_learning.vertica import LinearRegression
Then we can create the model:
model = LinearRegression( tol = 1e-6, max_iter = 100, solver = 'newton', fit_intercept = True, )
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err | t_value |p_value ----------------+-----------+--------+---------+-------- Intercept | 148.02547 | 6.79058|21.79864 | 0.00000 fixed_acidity | 0.14160 | 0.01236|11.45689 | 0.00000 volatile_acidity| -0.73218 | 0.08695|-8.42037 | 0.00000 citric_acid | -0.09177 | 0.09468|-0.96924 | 0.33247 residual_sugar | 0.04328 | 0.00383|11.31352 | 0.00000 chlorides | -0.23843 | 0.38527|-0.61887 | 0.53603 density |-143.92796 | 6.90756|-20.83629| 0.00000 ============== regularization ============== type| lambda ----+-------- none| 1.00000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_f9ab1b6455a311ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_f9bbf4d455a311ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5196
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6.20684728809047 2 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 6.1941286454641 3 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 5.57100741255135 4 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 6.29186834342894 5 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 6.14211911507917 6 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 5.77526940829662 7 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 5.77207606507596 8 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 5.6273524184578 9 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 6.01401334483396 10 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 5.94887837393534 11 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 6.05236738012238 12 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 4.99722956187955 13 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 6.18045510812939 14 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white 5.92624563404391 15 5.2 0.25 0.23 1.4 0.047 20.0 77.0 0.99001 3.32 0.62 11.4 5 0 white 6.11689882925313 16 5.2 0.28 0.29 1.1 0.028 18.0 69.0 0.99168 3.24 0.54 10.0 6 0 white 5.84061536455133 17 5.2 0.36 0.02 1.6 0.031 24.0 104.0 0.9896 3.44 0.35 12.2 6 0 white 6.12711098966014 18 5.2 0.365 0.08 13.5 0.041 37.0 142.0 0.997 3.46 0.39 9.9 6 0 white 5.56547383743901 19 5.2 0.6 0.07 7.0 0.044 33.0 147.0 0.9944 3.33 0.58 9.7 5 0 white 5.48653565162437 20 5.3 0.21 0.29 0.7 0.028 11.0 66.0 0.99215 3.3 0.4 9.8 5 0 white 5.82107115888903 21 5.3 0.3 0.2 1.1 0.077 48.0 166.0 0.9944 3.3 0.54 8.7 4 0 white 5.44522367271864 22 5.3 0.36 0.27 6.3 0.028 40.0 132.0 0.99186 3.37 0.4 11.6 6 0 white 5.99716326429223 23 5.3 0.43 0.11 1.1 0.029 6.0 51.0 0.99076 3.51 0.48 11.2 4 0 white 5.89364228391082 24 5.3 0.47 0.11 2.2 0.048 16.0 89.0 0.99182 3.54 0.88 13.6 7 1 red 5.75486474578685 25 5.3 0.585 0.07 7.1 0.044 34.0 145.0 0.9945 3.34 0.57 9.7 6 0 white 5.50161300760678 26 5.3 0.715 0.19 1.5 0.161 7.0 62.0 0.99395 3.62 0.61 11.0 5 0 red 5.20433837029842 27 5.4 0.205 0.16 12.55 0.051 31.0 115.0 0.99564 3.4 0.38 10.8 6 0 white 5.85584625968568 28 5.4 0.22 0.29 1.2 0.045 69.0 152.0 0.99178 3.76 0.63 11.0 7 1 white 5.89874724438434 29 5.4 0.22 0.35 6.5 0.029 26.0 87.0 0.99092 3.29 0.44 12.5 7 1 white 6.25019541954981 30 5.4 0.24 0.18 2.3 0.05 22.0 145.0 0.99207 3.24 0.46 10.3 5 0 white 5.89887006204009 31 5.4 0.29 0.38 1.2 0.029 31.0 132.0 0.98895 3.28 0.36 12.4 6 0 white 6.25036700470091 32 5.4 0.415 0.19 1.6 0.039 27.0 88.0 0.99265 3.54 0.41 10.0 7 1 white 5.65867326665682 33 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 6.214210020303 34 5.4 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 5.43043976655829 35 5.5 0.12 0.33 1.0 0.038 23.0 131.0 0.99164 3.25 0.45 9.8 5 0 white 5.99561784310117 36 5.5 0.16 0.22 4.5 0.03 30.0 102.0 0.9938 3.24 0.36 9.4 6 0 white 5.81891316218091 37 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.6333333333333 6 0 white 6.24450990631095 38 5.5 0.18 0.22 5.5 0.037 10.0 86.0 0.99156 3.46 0.44 12.2 5 0 white 6.16827497427201 39 5.5 0.3 0.25 1.9 0.029 33.0 118.0 0.98972 3.36 0.66 12.5 6 0 white 6.18860330553113 40 5.5 0.315 0.38 2.6 0.033 10.0 69.0 0.9909 3.12 0.59 10.8 6 0 white 6.02519533024284 41 5.6 0.15 0.26 5.55 0.051 51.0 139.0 0.99336 3.47 0.5 11.0 6 0 white 5.94048496901053 42 5.6 0.15 0.31 5.3 0.038 8.0 79.0 0.9923 3.3 0.39 10.5 6 0 white 6.08074094830189 43 5.6 0.175 0.29 0.8 0.043 20.0 67.0 0.99112 3.28 0.48 9.9 6 0 white 6.03817406378627 44 5.6 0.19 0.26 1.4 0.03 12.0 76.0 0.9905 3.25 0.37 10.9 7 1 white 6.14824477571861 45 5.6 0.19 0.47 4.5 0.03 19.0 112.0 0.9922 3.56 0.45 11.2 6 0 white 6.01845099044428 46 5.6 0.21 0.4 1.3 0.041 81.0 147.0 0.9901 3.22 0.95 11.6 8 1 white 6.17137485666964 47 5.6 0.22 0.32 1.2 0.024 29.0 97.0 0.98823 3.2 0.46 13.05 7 1 white 6.44026543708082 48 5.6 0.225 0.24 9.8 0.054 59.0 140.0 0.99545 3.17 0.39 10.2 6 0 white 5.76980418485709 49 5.6 0.25 0.26 3.6 0.037 18.0 115.0 0.9904 3.42 0.5 12.6 6 0 white 6.21224460018232 50 5.6 0.26 0.26 5.7 0.031 12.0 80.0 0.9923 3.25 0.38 10.8 5 0 white 6.02376929224209 51 5.6 0.26 0.5 11.4 0.029 25.0 93.0 0.99428 3.23 0.49 10.5 6 0 white 5.9639163795417 52 5.6 0.27 0.37 0.9 0.025 11.0 49.0 0.98845 3.29 0.33 13.1 6 0 white 6.35418306655959 53 5.6 0.28 0.27 3.9 0.043 52.0 158.0 0.99202 3.35 0.44 10.7 7 1 white 5.96775052247244 54 5.6 0.29 0.05 0.8 0.038 11.0 30.0 0.9924 3.36 0.35 9.2 5 0 white 5.79296222182757 55 5.6 0.31 0.78 13.9 0.074 23.0 92.0 0.99677 3.39 0.48 10.5 6 0 red 5.64069232295722 56 5.6 0.35 0.4 6.3 0.022 23.0 174.0 0.9922 3.54 0.5 11.6 7 1 white 5.98753032040671 57 5.6 0.42 0.34 2.4 0.022 34.0 97.0 0.98915 3.22 0.38 12.8 7 1 white 6.21198906077268 58 5.6 0.66 0.0 2.5 0.066 7.0 15.0 0.99256 3.52 0.58 12.9 5 0 red 5.57050990897838 59 5.7 0.12 0.26 5.5 0.034 21.0 99.0 0.99324 3.09 0.57 9.9 6 0 white 5.99577105970246 60 5.7 0.14 0.3 5.4 0.045 26.0 105.0 0.99469 3.32 0.45 9.3 5 0 white 5.76181106168843 61 5.7 0.15 0.28 3.7 0.045 57.0 151.0 0.9913 3.22 0.27 11.2 6 0 white 6.1706717116661 62 5.7 0.15 0.47 11.4 0.035 49.0 128.0 0.99456 3.03 0.34 10.5 8 1 white 6.01963818543911 63 5.7 0.2 0.24 13.8 0.047 44.0 112.0 0.99837 2.97 0.66 8.8 6 0 white 5.55677071510155 64 5.7 0.21 0.25 1.1 0.035 26.0 81.0 0.9902 3.31 0.52 11.4 6 0 white 6.17768241459061 65 5.7 0.21 0.32 0.9 0.038 38.0 121.0 0.99074 3.24 0.46 10.6 6 0 white 6.08416723885691 66 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.60573771923202 67 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.60573771923202 68 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 5.64210655616952 69 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 5.64210655616952 70 5.7 0.23 0.25 7.95 0.042 16.0 108.0 0.99486 3.44 0.61 10.3 6 0 white 5.78710420088834 71 5.7 0.245 0.33 1.1 0.049 28.0 150.0 0.9927 3.13 0.42 9.3 5 0 white 5.78155705898914 72 5.7 0.25 0.27 11.5 0.04 24.0 120.0 0.99411 3.33 0.31 10.8 6 0 white 6.03267694831808 73 5.7 0.28 0.24 17.5 0.044 60.0 167.0 0.9989 3.31 0.44 9.4 5 0 white 5.58275028209451 74 5.7 0.29 0.16 7.9 0.044 48.0 197.0 0.99512 3.21 0.36 9.4 5 0 white 5.71137075244974 75 5.7 0.36 0.34 4.2 0.026 21.0 77.0 0.9907 3.41 0.45 11.9 6 0 white 6.12393374028346 76 5.7 0.39 0.25 4.9 0.033 49.0 113.0 0.98966 3.26 0.58 13.1 7 1 white 6.28853651783501 77 5.7 0.45 0.42 1.1 0.051 61.0 197.0 0.9932 3.02 0.4 9.0 5 0 white 5.55076133427823 78 5.8 0.15 0.28 0.8 0.037 43.0 127.0 0.99198 3.24 0.51 9.3 5 0 white 5.96336855273358 79 5.8 0.15 0.31 5.9 0.036 7.0 73.0 0.99152 3.2 0.43 11.9 6 0 white 6.24776694433095 80 5.8 0.15 0.32 1.2 0.037 14.0 119.0 0.99137 3.19 0.5 10.2 6 0 white 6.06480423186323 81 5.8 0.15 0.49 1.1 0.048 21.0 98.0 0.9929 3.19 0.48 9.2 5 0 white 5.82204386875796 82 5.8 0.17 0.34 1.8 0.045 96.0 170.0 0.99035 3.38 0.9 11.8 8 1 white 6.21918989737335 83 5.8 0.19 0.24 1.3 0.044 38.0 128.0 0.99362 3.77 0.6 10.6 5 0 white 5.72167919497346 84 5.8 0.19 0.25 10.8 0.042 33.0 124.0 0.99646 3.22 0.41 9.2 6 0 white 5.72360218958272 85 5.8 0.2 0.16 1.4 0.042 44.0 99.0 0.98912 3.23 0.37 12.2 6 0 white 6.37417898898394 86 5.8 0.2 0.27 1.4 0.031 12.0 77.0 0.9905 3.25 0.36 10.9 7 1 white 6.16808683696726 87 5.8 0.22 0.25 1.5 0.024 21.0 109.0 0.99234 3.37 0.58 10.4 6 0 white 5.89644780357213 88 5.8 0.22 0.3 1.1 0.047 36.0 131.0 0.992 3.26 0.45 10.4 5 0 white 5.9180008134978 89 5.8 0.23 0.21 1.5 0.044 21.0 110.0 0.99138 3.3 0.57 11.0 6 0 white 6.02619894293844 90 5.8 0.25 0.24 13.3 0.044 41.0 137.0 0.9972 3.34 0.42 9.5 5 0 white 5.68179505694098 91 5.8 0.25 0.28 11.1 0.056 45.0 175.0 0.99755 3.42 0.43 9.5 5 0 white 5.52968190434038 92 5.8 0.26 0.18 1.2 0.031 40.0 114.0 0.9908 3.42 0.4 11.0 7 1 white 6.0805817748747 93 5.8 0.26 0.29 1.0 0.042 35.0 101.0 0.99044 3.36 0.48 11.4 7 1 white 6.11102366256591 94 5.8 0.27 0.27 12.3 0.045 55.0 170.0 0.9972 3.28 0.42 9.3 6 0 white 5.62088442671694 95 5.8 0.27 0.4 1.2 0.076 47.0 130.0 0.99185 3.13 0.45 10.3 6 0 white 5.89121770456921 96 5.8 0.29 0.21 2.6 0.025 12.0 120.0 0.9894 3.39 0.79 14.0 7 1 white 6.31937923374545 97 5.8 0.3 0.09 6.3 0.042 36.0 138.0 0.99382 3.15 0.48 9.7 5 0 white 5.84297467826724 98 5.8 0.315 0.19 19.4 0.031 28.0 106.0 0.99704 2.97 0.4 10.55 6 0 white 5.92890185386878 99 5.8 0.32 0.2 2.6 0.027 17.0 123.0 0.98936 3.36 0.78 13.9 7 1 white 6.30361190054361 100 5.8 0.35 0.29 3.2 0.034 41.0 151.0 0.9912 3.35 0.58 11.6333333333333 7 1 white 6.03285664168817 Rows: 1-100 | Columns: 15Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.