Loading...

verticapy.sql.functions.jaro_winkler_distance

verticapy.sql.functions.jaro_winkler_distance(expr1: Annotated[str | list[str] | StringSQL | list[StringSQL], ''], expr2: Annotated[str | list[str] | StringSQL | list[StringSQL], '']) StringSQL

Calculates and returns the Jaro-Winkler distance between two strings.

Parameters

expr1: SQLExpression

Expression.

expr2: SQLExpression

Expression.

Returns

StringSQL

SQL string.

Examples

First, let’s import the vDataFrame in order to create a dummy dataset.

from verticapy import vDataFrame

Now, let’s import the VerticaPy SQL functions.

import verticapy.sql.functions as vpf

We can now build a dummy dataset.

df = vDataFrame({"x": ["hello", "apple", "heroes", "allo"]})

Now, let’s go ahead and apply the function.

df["jaro_winkler_distance_x"] = vpf.jaro_winkler_distance(df["x"], 'heyllow')
display(df)
Abc
x
Varchar(6)
100%
123
jaro_winkler_distance_x
Float(22)
100%
1hello0.923809523809524
2apple0.447619047619048
3heroes0.714285714285714
4allo0.726190476190476

Note

It’s crucial to utilize VerticaPy SQL functions in coding, as they can be updated over time with new syntax. While SQL functions typically remain stable, they may vary across platforms or versions. VerticaPy effectively manages these changes, a task not achievable with pure SQL.

See also

vDataFrame.eval() : Evaluates the expression.