Loading...

verticapy.machine_learning.vertica.svm.LinearSVR.predict

LinearSVR.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 152.15453 | 6.79302|22.39867 | 0.00000
 fixed_acidity  |  0.15765  | 0.01221|12.91452 | 0.00000
volatile_acidity| -0.77679  | 0.08784|-8.84269 | 0.00000
  citric_acid   | -0.20275  | 0.09387|-2.15997 | 0.03082
 residual_sugar |  0.04316  | 0.00381|11.34137 | 0.00000
   chlorides    |  0.00807  | 0.38721| 0.02085 | 0.98337
    density     |-148.16636 | 6.90833|-21.44751| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_f7460f4055a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_f75846e255a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5197 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.90.2250.44.20.0329.0118.00.9893.570.3612.881white6.15845865414042
24.20.2150.235.10.04164.0157.00.996883.420.448.030white5.11936900539706
34.40.320.394.30.0331.0127.00.989043.460.3612.881white6.16390528206477
44.90.3450.341.00.06832.0143.00.991383.240.410.150white5.74462657340445
55.00.240.195.00.04317.0101.00.994383.670.5710.050white5.60029530511477
65.00.240.341.10.03449.0158.00.987743.320.3213.171white6.38532078260261
75.00.2550.222.70.04346.0153.00.992383.750.7611.360white5.77963191386945
85.00.290.545.70.03554.0155.00.989763.270.3412.981white6.20516596616855
95.00.330.2311.80.0323.0158.00.993223.410.6411.860white5.98751177678051
105.00.350.257.80.03124.0116.00.992413.390.411.360white5.91531477372794
115.00.440.0418.60.03938.0128.00.99853.370.5710.260white5.45181235954649
125.00.4550.181.90.03633.0106.00.987463.210.8314.071white6.3267811539634
135.01.040.241.60.0532.096.00.99343.740.6211.550red4.9672539494388
145.10.110.321.60.02812.090.00.990083.570.5212.260white6.1809438407731
155.10.1650.225.70.04742.0146.00.99343.180.559.960white5.84368192043988
165.10.230.181.00.05313.099.00.989563.220.3911.550white6.1674692048264
175.10.350.266.80.03436.0120.00.991883.380.411.560white5.96444729090942
185.10.390.211.70.02715.072.00.98943.50.4512.560white6.09080765850354
195.10.510.182.10.04216.0101.00.99243.460.8712.971red5.5765609421839
205.20.1550.331.60.02813.059.00.989753.30.8411.981white6.2086207688038
215.20.2850.295.150.03564.0138.00.98953.190.3412.481white6.30605518472157
225.20.30.341.50.03818.096.00.989423.560.4813.081white6.13861921199643
235.20.310.22.40.02727.0117.00.988863.560.4513.071white6.28096289763803
245.20.310.365.10.03146.0145.00.98973.140.3112.471white6.24061928900713
255.20.340.376.20.03142.0133.00.990763.250.4112.560white6.1057048123877
265.20.370.331.20.02813.081.00.99023.370.3811.760white5.9576740953004
275.20.50.182.00.03623.0129.00.989493.360.7713.471white6.0268936720521
285.30.210.290.70.02811.066.00.992153.30.49.850white5.79533187992504
295.30.260.235.150.03448.0160.00.99523.820.5110.571white5.5088487059659
305.30.30.31.20.02925.093.00.987423.310.413.671white6.44580721389397
315.30.430.111.10.0296.051.00.990763.510.4811.240white5.88415710163028
325.30.7150.191.50.1617.062.00.993953.620.6111.050red5.19223069733494
335.40.220.356.50.02926.087.00.990923.290.4412.571white6.22372845101134
345.40.270.224.60.02229.0107.00.988893.330.5413.860white6.42996969221005
355.40.290.381.20.02931.0132.00.988953.280.3612.460white6.22642509292095
365.40.330.314.00.0327.0108.00.990313.30.4312.271white6.12888863381485
375.40.3750.43.30.05429.0147.00.994823.420.529.150white5.37743875081728
385.40.50.135.00.02812.0107.00.990793.480.8813.571white6.00535217605699
395.40.590.077.00.04536.0147.00.99443.340.579.760white5.49917794409481
405.40.5950.12.80.04226.080.00.99323.360.389.350white5.48572631539128
415.50.140.274.60.02922.0104.00.99493.340.449.050white5.64615570298332
425.50.160.261.50.03235.0100.00.990763.430.7712.060white6.11229299762996
435.50.160.311.20.02631.068.00.98983.330.4411.6560white6.23139935413681
445.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white6.23139935413681
455.50.180.225.50.03710.086.00.991563.460.4412.250white6.15900377205401
465.50.190.270.90.0452.0103.00.990263.50.3911.250white6.13521529462801
475.50.280.211.60.03223.085.00.990273.420.4212.550white6.10613369903723
485.50.290.31.10.02220.0110.00.988693.340.3812.871white6.2925614119159
495.50.320.131.30.03745.0156.00.991843.260.3810.750white5.84575465141859
505.50.350.351.10.04514.0167.00.9923.340.689.960white5.74557157019626
515.50.490.031.80.04428.087.00.99083.50.8214.081red5.90970471848277
525.60.120.332.90.04421.073.00.988963.170.3212.981white6.47215300915644
535.60.150.315.30.0388.079.00.99233.30.3910.560white6.06155786374327
545.60.180.581.250.03429.0129.00.989843.510.612.071white6.17318060125015
555.60.250.192.40.04942.0166.00.9923.250.4310.460white5.92759253488066
565.60.2550.5710.70.05666.0171.00.994643.250.6110.471white5.81376437059509
575.60.260.511.40.02925.093.00.994283.230.4910.560white5.90740526262579
585.60.340.11.30.03120.068.00.99063.360.5111.271white6.03574435621834
595.60.490.134.50.03917.0116.00.99073.420.913.771white6.03649503970439
605.60.50.092.30.04917.099.00.99373.630.6313.050red5.49747305825707
615.60.540.041.70.0495.013.00.99423.720.5811.450red5.37656183356864
625.60.540.041.70.0495.013.00.99423.720.5811.450red5.37656183356864
635.60.660.02.20.0873.011.00.993783.710.6312.871red5.37557302631856
645.60.660.02.50.0667.015.00.992563.520.5812.950red5.56911362603802
655.60.850.051.40.04512.088.00.99243.560.8212.981red5.38745072334368
665.60.9150.02.10.04117.078.00.993463.680.7311.450red5.22021883562246
675.70.10.271.30.04721.0100.00.99283.270.469.550white5.87763271690343
685.70.160.266.30.04328.0113.00.99363.060.589.960white5.93027402294811
695.70.180.262.20.02321.095.00.98933.070.5412.360white6.37474744961236
705.70.220.216.00.04441.0113.00.998623.220.468.960white5.57067048816174
715.70.220.2216.650.04439.0110.00.998553.240.489.060white5.60503925597197
725.70.250.229.80.04950.0125.00.995713.20.4510.160white5.70694131670061
735.70.250.2711.50.0424.0120.00.994113.330.3110.860white6.00716443562547
745.70.2550.651.20.07917.0137.00.993073.20.429.450white5.63612186666469
755.70.260.31.80.03930.0105.00.989953.480.5212.571white6.19105254698198
765.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.96087575998177
775.70.270.169.00.05332.0111.00.994743.360.3710.460white5.81279874304167
785.70.310.284.10.0322.086.00.990623.310.3811.771white6.15618592690871
795.70.320.181.40.02926.0104.00.99063.440.3711.060white6.05512420244813
805.70.40.355.10.02617.0113.00.990523.180.6712.460white6.13002399224598
815.70.430.35.70.03924.098.00.9923.540.6112.371white5.92357124849823
825.80.120.211.30.05635.0121.00.99083.320.3311.460white6.18643259395802
835.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.95744751987644
845.80.130.265.10.03919.0103.00.994783.360.479.360white5.74268521547046
855.80.150.280.80.03743.0127.00.991983.240.519.350white5.95236787386486
865.80.150.315.90.0367.073.00.991523.20.4311.960white6.23453568970578
875.80.170.341.80.04596.0170.00.990353.380.911.881white6.20939988964756
885.80.180.371.20.03619.074.00.988533.090.4912.771white6.43924515740426
895.80.20.241.40.03365.0169.00.990433.590.5612.371white6.17715869943649
905.80.220.290.90.03434.089.00.989363.140.3611.171white6.28845270434906
915.80.220.31.10.04736.0131.00.9923.260.4510.450white5.90400236801952
925.80.250.2613.10.05144.0148.00.99723.290.389.350white5.63626327085368
935.80.260.181.20.03140.0114.00.99083.420.411.071white6.07924769180912
945.80.260.249.20.04455.0152.00.99613.310.389.450white5.62716369580505
955.80.260.291.00.04235.0101.00.990443.360.4811.471white6.10174192098583
965.80.270.27.30.0442.0145.00.994423.150.489.850white5.79439443422706
975.80.280.669.10.03926.0159.00.99653.660.5510.850white5.4628483827309
985.80.290.212.60.02512.0120.00.98943.390.7914.071white6.31766610636279
995.80.290.3810.70.03849.0136.00.993663.110.5911.260white6.00168783638404
1005.80.30.121.60.03657.0163.00.992393.380.5910.560white5.84206030232181
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.