
verticapy.machine_learning.vertica.svm.LinearSVR.predict¶
- LinearSVR.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame ¶
Predicts using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
andSELECT 1
are invalid.- X: SQLColumns, optional
list
of the columns used to deploy the models. If empty, the model predictors are used.- name: str, optional
Name of the added :py:class`vDataColumn`. If empty, a name is generated.
- inplace: bool, optional
If set to True, the prediction is added to the :py:class`vDataFrame`.
Returns¶
- vDataFrame
the input object.
Examples¶
We import
verticapy
:import verticapy as vp
For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Divide your dataset into training and testing subsets.
data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Let’s import the model:
from verticapy.machine_learning.vertica import LinearRegression
Then we can create the model:
model = LinearRegression( tol = 1e-6, max_iter = 100, solver = 'newton', fit_intercept = True, )
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err | t_value |p_value ----------------+-----------+--------+---------+-------- Intercept | 152.15453 | 6.79302|22.39867 | 0.00000 fixed_acidity | 0.15765 | 0.01221|12.91452 | 0.00000 volatile_acidity| -0.77679 | 0.08784|-8.84269 | 0.00000 citric_acid | -0.20275 | 0.09387|-2.15997 | 0.03082 residual_sugar | 0.04316 | 0.00381|11.34137 | 0.00000 chlorides | 0.00807 | 0.38721| 0.02085 | 0.98337 density |-148.16636 | 6.90833|-21.44751| 0.00000 ============== regularization ============== type| lambda ----+-------- none| 1.00000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_f7460f4055a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_f75846e255a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5197
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 6.15845865414042 2 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5.11936900539706 3 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6.16390528206477 4 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 5.74462657340445 5 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 5.60029530511477 6 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 6.38532078260261 7 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 5.77963191386945 8 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 6.20516596616855 9 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 5.98751177678051 10 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 5.91531477372794 11 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 5.45181235954649 12 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 6.3267811539634 13 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 4.9672539494388 14 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 6.1809438407731 15 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 5.84368192043988 16 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 6.1674692048264 17 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.96444729090942 18 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 6.09080765850354 19 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 5.5765609421839 20 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 6.2086207688038 21 5.2 0.285 0.29 5.15 0.035 64.0 138.0 0.9895 3.19 0.34 12.4 8 1 white 6.30605518472157 22 5.2 0.3 0.34 1.5 0.038 18.0 96.0 0.98942 3.56 0.48 13.0 8 1 white 6.13861921199643 23 5.2 0.31 0.2 2.4 0.027 27.0 117.0 0.98886 3.56 0.45 13.0 7 1 white 6.28096289763803 24 5.2 0.31 0.36 5.1 0.031 46.0 145.0 0.9897 3.14 0.31 12.4 7 1 white 6.24061928900713 25 5.2 0.34 0.37 6.2 0.031 42.0 133.0 0.99076 3.25 0.41 12.5 6 0 white 6.1057048123877 26 5.2 0.37 0.33 1.2 0.028 13.0 81.0 0.9902 3.37 0.38 11.7 6 0 white 5.9576740953004 27 5.2 0.5 0.18 2.0 0.036 23.0 129.0 0.98949 3.36 0.77 13.4 7 1 white 6.0268936720521 28 5.3 0.21 0.29 0.7 0.028 11.0 66.0 0.99215 3.3 0.4 9.8 5 0 white 5.79533187992504 29 5.3 0.26 0.23 5.15 0.034 48.0 160.0 0.9952 3.82 0.51 10.5 7 1 white 5.5088487059659 30 5.3 0.3 0.3 1.2 0.029 25.0 93.0 0.98742 3.31 0.4 13.6 7 1 white 6.44580721389397 31 5.3 0.43 0.11 1.1 0.029 6.0 51.0 0.99076 3.51 0.48 11.2 4 0 white 5.88415710163028 32 5.3 0.715 0.19 1.5 0.161 7.0 62.0 0.99395 3.62 0.61 11.0 5 0 red 5.19223069733494 33 5.4 0.22 0.35 6.5 0.029 26.0 87.0 0.99092 3.29 0.44 12.5 7 1 white 6.22372845101134 34 5.4 0.27 0.22 4.6 0.022 29.0 107.0 0.98889 3.33 0.54 13.8 6 0 white 6.42996969221005 35 5.4 0.29 0.38 1.2 0.029 31.0 132.0 0.98895 3.28 0.36 12.4 6 0 white 6.22642509292095 36 5.4 0.33 0.31 4.0 0.03 27.0 108.0 0.99031 3.3 0.43 12.2 7 1 white 6.12888863381485 37 5.4 0.375 0.4 3.3 0.054 29.0 147.0 0.99482 3.42 0.52 9.1 5 0 white 5.37743875081728 38 5.4 0.5 0.13 5.0 0.028 12.0 107.0 0.99079 3.48 0.88 13.5 7 1 white 6.00535217605699 39 5.4 0.59 0.07 7.0 0.045 36.0 147.0 0.9944 3.34 0.57 9.7 6 0 white 5.49917794409481 40 5.4 0.595 0.1 2.8 0.042 26.0 80.0 0.9932 3.36 0.38 9.3 5 0 white 5.48572631539128 41 5.5 0.14 0.27 4.6 0.029 22.0 104.0 0.9949 3.34 0.44 9.0 5 0 white 5.64615570298332 42 5.5 0.16 0.26 1.5 0.032 35.0 100.0 0.99076 3.43 0.77 12.0 6 0 white 6.11229299762996 43 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.65 6 0 white 6.23139935413681 44 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.6333333333333 6 0 white 6.23139935413681 45 5.5 0.18 0.22 5.5 0.037 10.0 86.0 0.99156 3.46 0.44 12.2 5 0 white 6.15900377205401 46 5.5 0.19 0.27 0.9 0.04 52.0 103.0 0.99026 3.5 0.39 11.2 5 0 white 6.13521529462801 47 5.5 0.28 0.21 1.6 0.032 23.0 85.0 0.99027 3.42 0.42 12.5 5 0 white 6.10613369903723 48 5.5 0.29 0.3 1.1 0.022 20.0 110.0 0.98869 3.34 0.38 12.8 7 1 white 6.2925614119159 49 5.5 0.32 0.13 1.3 0.037 45.0 156.0 0.99184 3.26 0.38 10.7 5 0 white 5.84575465141859 50 5.5 0.35 0.35 1.1 0.045 14.0 167.0 0.992 3.34 0.68 9.9 6 0 white 5.74557157019626 51 5.5 0.49 0.03 1.8 0.044 28.0 87.0 0.9908 3.5 0.82 14.0 8 1 red 5.90970471848277 52 5.6 0.12 0.33 2.9 0.044 21.0 73.0 0.98896 3.17 0.32 12.9 8 1 white 6.47215300915644 53 5.6 0.15 0.31 5.3 0.038 8.0 79.0 0.9923 3.3 0.39 10.5 6 0 white 6.06155786374327 54 5.6 0.18 0.58 1.25 0.034 29.0 129.0 0.98984 3.51 0.6 12.0 7 1 white 6.17318060125015 55 5.6 0.25 0.19 2.4 0.049 42.0 166.0 0.992 3.25 0.43 10.4 6 0 white 5.92759253488066 56 5.6 0.255 0.57 10.7 0.056 66.0 171.0 0.99464 3.25 0.61 10.4 7 1 white 5.81376437059509 57 5.6 0.26 0.5 11.4 0.029 25.0 93.0 0.99428 3.23 0.49 10.5 6 0 white 5.90740526262579 58 5.6 0.34 0.1 1.3 0.031 20.0 68.0 0.9906 3.36 0.51 11.2 7 1 white 6.03574435621834 59 5.6 0.49 0.13 4.5 0.039 17.0 116.0 0.9907 3.42 0.9 13.7 7 1 white 6.03649503970439 60 5.6 0.5 0.09 2.3 0.049 17.0 99.0 0.9937 3.63 0.63 13.0 5 0 red 5.49747305825707 61 5.6 0.54 0.04 1.7 0.049 5.0 13.0 0.9942 3.72 0.58 11.4 5 0 red 5.37656183356864 62 5.6 0.54 0.04 1.7 0.049 5.0 13.0 0.9942 3.72 0.58 11.4 5 0 red 5.37656183356864 63 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 5.37557302631856 64 5.6 0.66 0.0 2.5 0.066 7.0 15.0 0.99256 3.52 0.58 12.9 5 0 red 5.56911362603802 65 5.6 0.85 0.05 1.4 0.045 12.0 88.0 0.9924 3.56 0.82 12.9 8 1 red 5.38745072334368 66 5.6 0.915 0.0 2.1 0.041 17.0 78.0 0.99346 3.68 0.73 11.4 5 0 red 5.22021883562246 67 5.7 0.1 0.27 1.3 0.047 21.0 100.0 0.9928 3.27 0.46 9.5 5 0 white 5.87763271690343 68 5.7 0.16 0.26 6.3 0.043 28.0 113.0 0.9936 3.06 0.58 9.9 6 0 white 5.93027402294811 69 5.7 0.18 0.26 2.2 0.023 21.0 95.0 0.9893 3.07 0.54 12.3 6 0 white 6.37474744961236 70 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.57067048816174 71 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 5.60503925597197 72 5.7 0.25 0.22 9.8 0.049 50.0 125.0 0.99571 3.2 0.45 10.1 6 0 white 5.70694131670061 73 5.7 0.25 0.27 11.5 0.04 24.0 120.0 0.99411 3.33 0.31 10.8 6 0 white 6.00716443562547 74 5.7 0.255 0.65 1.2 0.079 17.0 137.0 0.99307 3.2 0.42 9.4 5 0 white 5.63612186666469 75 5.7 0.26 0.3 1.8 0.039 30.0 105.0 0.98995 3.48 0.52 12.5 7 1 white 6.19105254698198 76 5.7 0.265 0.28 6.9 0.036 46.0 150.0 0.99299 3.36 0.44 10.8 7 1 white 5.96087575998177 77 5.7 0.27 0.16 9.0 0.053 32.0 111.0 0.99474 3.36 0.37 10.4 6 0 white 5.81279874304167 78 5.7 0.31 0.28 4.1 0.03 22.0 86.0 0.99062 3.31 0.38 11.7 7 1 white 6.15618592690871 79 5.7 0.32 0.18 1.4 0.029 26.0 104.0 0.9906 3.44 0.37 11.0 6 0 white 6.05512420244813 80 5.7 0.4 0.35 5.1 0.026 17.0 113.0 0.99052 3.18 0.67 12.4 6 0 white 6.13002399224598 81 5.7 0.43 0.3 5.7 0.039 24.0 98.0 0.992 3.54 0.61 12.3 7 1 white 5.92357124849823 82 5.8 0.12 0.21 1.3 0.056 35.0 121.0 0.9908 3.32 0.33 11.4 6 0 white 6.18643259395802 83 5.8 0.13 0.22 12.7 0.058 24.0 183.0 0.9956 3.32 0.42 11.7 6 0 white 5.95744751987644 84 5.8 0.13 0.26 5.1 0.039 19.0 103.0 0.99478 3.36 0.47 9.3 6 0 white 5.74268521547046 85 5.8 0.15 0.28 0.8 0.037 43.0 127.0 0.99198 3.24 0.51 9.3 5 0 white 5.95236787386486 86 5.8 0.15 0.31 5.9 0.036 7.0 73.0 0.99152 3.2 0.43 11.9 6 0 white 6.23453568970578 87 5.8 0.17 0.34 1.8 0.045 96.0 170.0 0.99035 3.38 0.9 11.8 8 1 white 6.20939988964756 88 5.8 0.18 0.37 1.2 0.036 19.0 74.0 0.98853 3.09 0.49 12.7 7 1 white 6.43924515740426 89 5.8 0.2 0.24 1.4 0.033 65.0 169.0 0.99043 3.59 0.56 12.3 7 1 white 6.17715869943649 90 5.8 0.22 0.29 0.9 0.034 34.0 89.0 0.98936 3.14 0.36 11.1 7 1 white 6.28845270434906 91 5.8 0.22 0.3 1.1 0.047 36.0 131.0 0.992 3.26 0.45 10.4 5 0 white 5.90400236801952 92 5.8 0.25 0.26 13.1 0.051 44.0 148.0 0.9972 3.29 0.38 9.3 5 0 white 5.63626327085368 93 5.8 0.26 0.18 1.2 0.031 40.0 114.0 0.9908 3.42 0.4 11.0 7 1 white 6.07924769180912 94 5.8 0.26 0.24 9.2 0.044 55.0 152.0 0.9961 3.31 0.38 9.4 5 0 white 5.62716369580505 95 5.8 0.26 0.29 1.0 0.042 35.0 101.0 0.99044 3.36 0.48 11.4 7 1 white 6.10174192098583 96 5.8 0.27 0.2 7.3 0.04 42.0 145.0 0.99442 3.15 0.48 9.8 5 0 white 5.79439443422706 97 5.8 0.28 0.66 9.1 0.039 26.0 159.0 0.9965 3.66 0.55 10.8 5 0 white 5.4628483827309 98 5.8 0.29 0.21 2.6 0.025 12.0 120.0 0.9894 3.39 0.79 14.0 7 1 white 6.31766610636279 99 5.8 0.29 0.38 10.7 0.038 49.0 136.0 0.99366 3.11 0.59 11.2 6 0 white 6.00168783638404 100 5.8 0.3 0.12 1.6 0.036 57.0 163.0 0.99239 3.38 0.59 10.5 6 0 white 5.84206030232181 Rows: 1-100 | Columns: 15Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.