Loading...

verticapy.machine_learning.vertica.svm.LinearSVC.predict

LinearSVC.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, cutoff: Annotated[int | float | Decimal, 'Python Numbers'] = 0.5, inplace: bool = True) vDataFrame

Makes predictions on the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and “SELECT 1” are invalid.

X: SQLColumns, optional

List of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added vDataColumn. If empty, a name is generated.

cutoff: float, optional

Probability cutoff.

inplace: bool, optional

If set to True, the prediction is added to the vDataFrame.

Returns

vDataFrame

the input object.

Examples

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14
train, test = data.train_test_split(test_size = 0.5)

Let’s import the model:

from verticapy.machine_learning.vertica import LogisticRegression

Then we can create the model:

model = LogisticRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'Newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "good",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | z_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 438.11124 |31.81130|13.77219 | 0.00000
 fixed_acidity  |  0.48614  | 0.05608| 8.66869 | 0.00000
volatile_acidity| -0.95693  | 0.42999|-2.22546 | 0.02605
  citric_acid   | -0.29437  | 0.45496|-0.64703 | 0.51761
 residual_sugar |  0.14484  | 0.01759| 8.23337 | 0.00000
   chlorides    | -3.07940  | 2.55733|-1.20415 | 0.22853
    density     |-445.89295 |32.36993|-13.77491| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
logistic_reg('"public"."_verticapy_tmp_logisticregression_v_demo_ea6a629e55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_ea7dcafa55a411ef880f0242ac120002_"', '"good"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  5  
rejected_row_count|  0  
accepted_row_count|3247 
model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Integer
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white0
24.20.2150.235.10.04164.0157.00.996883.420.448.030white0
34.40.460.12.80.02431.0111.00.988163.480.3413.160white0
44.40.540.095.10.03852.097.00.990223.410.412.271white0
54.50.190.210.950.03389.0159.00.993323.340.428.050white0
64.70.4550.181.90.03633.0106.00.987463.210.8314.071white0
74.70.670.091.00.025.09.00.987223.30.3413.650white0
84.80.130.321.20.04240.098.00.98983.420.6411.871white0
94.80.170.282.90.0322.0111.00.99023.380.3411.371white0
104.80.210.2110.20.03717.0112.00.993243.660.4812.271white0
114.80.2250.381.20.07447.0130.00.991323.310.410.360white0
124.80.330.06.50.02834.0163.00.99373.350.619.950white0
134.80.340.06.50.02833.0163.00.99393.360.619.960white0
144.90.2350.2711.750.0334.0118.00.99543.070.59.460white0
154.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white0
164.90.3450.341.00.06832.0143.00.991383.240.410.150white0
174.90.470.171.90.03560.0148.00.989643.270.3511.560white0
185.00.170.561.50.02624.0115.00.99063.480.3910.871white0
195.00.240.195.00.04317.0101.00.994383.670.5710.050white0
205.00.240.212.20.03931.0100.00.990983.690.6211.760white0
215.00.240.341.10.03449.0158.00.987743.320.3213.171white0
225.00.270.324.50.03258.0178.00.989563.450.3112.671white0
235.00.270.41.20.07642.0124.00.992043.320.4710.160white0
245.00.290.545.70.03554.0155.00.989763.270.3412.981white0
255.00.310.06.40.04643.0166.00.9943.30.639.960white0
265.00.330.161.50.04910.097.00.99173.480.4410.760white0
275.00.330.161.50.04910.097.00.99173.480.4410.760white0
285.00.330.184.60.03240.0124.00.991143.180.411.060white0
295.00.330.2311.80.0323.0158.00.993223.410.6411.860white0
305.00.350.257.80.03124.0116.00.992413.390.411.360white0
315.00.350.257.80.03124.0116.00.992413.390.411.360white0
325.00.40.54.30.04629.080.00.99023.490.6613.660red0
335.00.420.242.00.0619.050.00.99173.720.7414.081red0
345.00.440.0418.60.03938.0128.00.99853.370.5710.260white0
355.00.610.121.30.00965.0100.00.98743.260.3713.550white0
365.00.740.01.20.04116.046.00.992584.010.5912.560red0
375.10.110.321.60.02812.090.00.990083.570.5212.260white0
385.10.250.361.30.03540.078.00.98913.230.6412.171white0
395.10.260.331.10.02746.0113.00.989463.350.4311.471white0
405.10.290.288.30.02627.0107.00.993083.360.3711.060white0
415.10.330.221.60.02718.089.00.98933.510.3812.571white0
425.10.330.276.70.02244.0129.00.992213.360.3911.071white0
435.10.350.266.80.03436.0120.00.991883.380.411.560white0
445.10.350.266.80.03436.0120.00.991883.380.411.560white0
455.10.5850.01.70.04414.086.00.992643.560.9412.971red0
465.20.160.340.80.02926.077.00.991553.250.5110.160white0
475.20.170.270.70.0311.068.00.992183.30.419.850white0
485.20.1850.221.00.0347.0123.00.992183.550.4410.1560white0
495.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white0
505.20.240.453.80.02721.0128.00.9923.550.4911.281white0
515.20.240.453.80.02721.0128.00.9923.550.4911.281white0
525.20.250.231.40.04720.077.00.990013.320.6211.450white0
535.20.280.291.10.02818.069.00.991683.240.5410.060white0
545.20.30.341.50.03818.096.00.989423.560.4813.081white0
555.20.310.365.10.03146.0145.00.98973.140.3112.471white0
565.20.320.251.80.10313.050.00.99573.380.559.250red0
575.20.3350.21.70.03317.074.00.990023.340.4812.360white0
585.20.340.01.80.0527.063.00.99163.680.7914.060red0
595.20.3650.0813.50.04137.0142.00.9973.460.399.960white0
605.20.380.267.70.05320.0103.00.99253.270.4512.260white0
615.20.440.041.40.03643.0119.00.98943.360.3312.181white0
625.20.480.041.60.05419.0106.00.99273.540.6212.271red0
635.20.6450.02.150.0815.028.00.994443.780.6112.560red0
645.30.1650.241.10.05125.0105.00.99253.320.479.150white0
655.30.210.290.70.02811.066.00.992153.30.49.850white0
665.30.240.331.30.03325.097.00.99063.590.3811.081white0
675.30.260.235.150.03448.0160.00.99523.820.5110.571white0
685.30.30.164.20.02937.0100.00.99053.30.3611.881white0
695.30.30.21.10.07748.0166.00.99443.30.548.740white0
705.30.310.3810.50.03153.0140.00.993213.340.4611.760white0
715.30.320.126.60.04322.0141.00.99373.360.610.460white0
725.30.330.31.20.04825.0119.00.990453.320.6211.360white0
735.30.360.276.30.02840.0132.00.991863.370.411.660white0
745.30.3950.071.30.03526.0102.00.9923.50.3510.660white0
755.30.40.253.90.03145.0130.00.990723.310.5811.7571white0
765.30.470.112.20.04816.089.00.991823.540.8813.671red0
775.30.470.112.20.04816.089.00.991823.540.8813.566666666666771red0
785.30.570.011.70.0545.027.00.99343.570.8412.571red0
795.30.580.076.90.04334.0149.00.99443.340.579.750white0
805.30.5850.077.10.04434.0145.00.99453.340.579.760white0
815.40.150.322.50.03710.051.00.988783.040.5812.660white0
825.40.170.272.70.04928.0104.00.992243.460.5510.360white0
835.40.180.244.80.04130.0113.00.994453.420.49.460white0
845.40.220.291.20.04569.0152.00.991783.760.6311.071white0
855.40.230.361.50.0374.0121.00.989763.240.9912.171white0
865.40.2650.287.80.05227.091.00.994323.190.3810.460white0
875.40.290.381.20.02931.0132.00.988953.280.3612.460white0
885.40.330.314.00.0327.0108.00.990313.30.4312.271white0
895.40.420.272.00.09223.055.00.994713.780.6412.371red0
905.40.450.276.40.03320.0102.00.989443.220.2713.481white0
915.40.50.135.00.02812.0107.00.990793.480.8813.571white0
925.40.530.162.70.03634.0128.00.988563.20.5313.281white0
935.40.580.081.90.05920.031.00.994843.50.6410.260red0
945.40.590.077.00.04536.0147.00.99443.340.579.760white0
955.50.120.331.00.03823.0131.00.991643.250.459.850white0
965.50.120.331.00.03823.0131.00.991643.250.459.850white0
975.50.140.274.60.02922.0104.00.99493.340.449.050white0
985.50.150.3214.00.03116.099.00.994373.260.3811.581white0
995.50.160.224.50.0330.0102.00.99383.240.369.460white0
1005.50.160.261.50.03235.0100.00.990763.430.7712.060white0
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.