Loading...

verticapy.vDataColumn.density

vDataColumn.density(by: str | None = None, bandwidth: Annotated[int | float | Decimal, 'Python Numbers'] = 1.0, kernel: Literal['gaussian', 'logistic', 'sigmoid', 'silverman'] = 'gaussian', nbins: int = 200, xlim: tuple[float, float] | None = None, chart: PlottingBase | TableSample | Axes | mFigure | Highchart | Highstock | Figure | None = None, **style_kwargs) PlottingBase | TableSample | Axes | mFigure | Highchart | Highstock | Figure

Draws the vDataColumn Density Plot.

Parameters

by: str, optional

vDataColumn used to partition the data.

bandwidth: PythonNumber, optional

The bandwidth of the kernel.

kernel: str, optional
The method used for the plot.

gaussian : Gaussian kernel. logistic : Logistic kernel. sigmoid : Sigmoid kernel. silverman : Silverman kernel.

nbins: int, optional

Maximum number of points used to evaluate the approximate density function. Increasing this parameter increases the precision but also increases the time of the learning and scoring phases.

xlim: tuple, optional

Set the x limits of the current axes.

chart: PlottingObject, optional

The chart object to plot on.

**style_kwargs

Any optional parameter to pass to the plotting functions.

Returns

obj

Plotting Object.

Examples

Note

The below example is a very basic one. For other more detailed examples and customization options, please see Density

Let’s begin by importing VerticaPy.

import verticapy as vp

Let’s also import numpy to create a dataset.

import numpy as np

We can create a variable N to fix the size:

N = 50

Let’s generate a dataset using the following data.

data = vp.vDataFrame(
    {
        "score1": np.random.normal(5, 1, N),
    }
)

Now we are ready to draw the plot:

data["score1"].density()

See also

vDataFrame.density() : Density Plot.
vDataFrame.range_plot() : Range Plot.
vDataColumn.hist() : Histogram.