Loading...

verticapy.machine_learning.vertica.neighbors.LocalOutlierFactor#

class verticapy.machine_learning.vertica.neighbors.LocalOutlierFactor(name: str = None, overwrite_model: bool = False, n_neighbors: int = 20, p: int = 2)#

[Beta Version] Creates a LocalOutlierFactor object by using the Local Outlier Factor algorithm as defined by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander. This object is using pure SQL to compute all the distances and final score.

Warning

This algorithm uses a CROSS JOIN during computation and is therefore computationally expensive at O(n * n), where n is the total number of elements. Since LocalOutlierFactor uses the p- distance, it is highly sensitive to unnormalized data. A table is created at the end of the learning phase.

Important

This algorithm is not Vertica Native and relies solely on SQL for attribute computation. While this model does not take advantage of the benefits provided by a model management system, including versioning and tracking, the SQL code it generates can still be used to create a pipeline.

Parameters#

name: str, optional

Name of the model. This is not a built-in model, so this name is used to build the final table.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

n_neighbors: int, optional

Number of neighbors to consider when computing the score.

p: int, optional

The p of the p-distances (distance metric used during the model computation).

Attributes#

Many attributes are created during the fitting phase.

n_neighbors_: int

Number of neighbors.

p_: int

The p of the p-distances.

n_errors_: int

Number of errors during the model fitting phase.

cnt_: int

Number of elements accepted during the model fitting phase.

Note

All attributes can be accessed using the get_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

Model Initialization#

First we import the LocalOutlierFactor model:

from verticapy.machine_learning.vertica import LocalOutlierFactor

Then we can create the model:

model = LocalOutlierFactor(
    n_neighbors = 10,
    p = 2,
)

Important

As this model is not native, it solely relies on SQL statements to compute various attributes, storing them within the object. No data is saved in the database.

Model Training#

We can now fit the model:

model.fit(data, X = ["density", "sulphates"])

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Hint

For clustering and anomaly detection, the use of predictors is optional. In such cases, all available predictors are considered, which can include solely numerical variables or a combination of numerical and categorical variables, depending on the model’s capabilities.

Important

As this model is not native, it solely relies on SQL statements to compute various attributes, storing them within the object. No data is saved in the database.

Prediction#

To find out the LOF score for each datapoint:

model.predict()
123
density
Float(22)
123
sulphates
Numeric(8)
123
lof_score
Float(22)
10.987110.291.49557938307096
20.987130.594.36760240314512
30.987220.343.07789202916531
40.98740.374.31858782295709
50.987420.42.50094914242849
60.987420.42.50094914242849
70.987460.833.33466363946875
80.987460.833.33466363946875
90.987580.393.7364256606699
100.987740.323.43397459549587
110.987790.42.14853030244538
120.987940.432.63540994699126
130.987940.432.63540994699126
140.988020.641.8182825155705
150.988150.52.58818673268653
160.988160.342.21534504135128
170.988190.422.22135847302409
180.988220.462.13484978056097
190.988230.462.12439763965241
200.9882450.411.58134352906031
210.988340.592.93423470538565
220.988360.41.70902727034283
230.988360.641.657984489133
240.98840.331.73821800906315
250.988450.331.67951646279074
260.988530.492.0190700099712
270.988540.381.95526381138181
280.988560.531.63314580921271
290.988560.531.63314580921271
300.98860.31.35598307014676
310.98860.562.22631968206013
320.988620.381.82669851967438
330.988620.381.82669851967438
340.988620.381.82669851967438
350.988650.351.35310796357846
360.988650.522.70208239126039
370.988650.542.31267545281108
380.988670.361.89147884656723
390.988670.361.89147884656723
400.988680.471.48770345546672
410.988690.381.71420388943065
420.98870.31.33787311261559
430.98870.351.32863061257307
440.988710.341.79206564222151
450.988710.461.68018165104127
460.988720.471.4612082915225
470.988720.471.4612082915225
480.988760.391.49162898777826
490.988760.41.47345186260012
500.988780.581.52653817884389
510.98880.371.53891961613257
520.988820.431.5836363627045
530.988830.391.39532261169049
540.988840.341.69190487369848
550.988860.41.4001457997842
560.988860.453.52852260618282
570.988890.351.25324037147643
580.988890.542.12566665608779
590.988890.641.41518012555853
600.98890.411.15995214926596
610.98890.421.47651126990326
620.98890.421.47651126990326
630.98890.531.49836073555002
640.98890.531.49836073555002
650.988920.331.2082734941048
660.988920.371.42527632140276
670.988920.411.14708523690582
680.988920.411.14708523690582
690.988920.411.14708523690582
700.988940.411.14708523690582
710.988940.531.48488222818374
720.988940.531.48488222818374
730.988950.361.33321712874556
740.988950.361.33321712874556
750.988960.322.23248309621846
760.988960.322.23248309621846
770.988980.71.9449572852662
780.9890.252.71244236429092
790.9890.361.21407391794018
800.9890.471.28236593489919
810.9890.641.37196252039158
820.989020.542.02437022452939
830.989040.361.1558648944772
840.989060.522.1449720131772
850.989060.522.1449720131772
860.98910.641.33267378842162
870.98910.951.11415525539495
880.989120.371.23587083018646
890.989120.381.12483101746498
900.989120.381.12483101746498
910.989120.421.25477862666665
920.989120.421.25477862666665
930.989130.331.14702092007232
940.989140.31.27811025276271
950.989140.361.08934029623393
960.989140.361.08934029623393
970.989140.391.15343682988862
980.989140.561.63244130233036
990.989150.381.09269298839458
1000.989160.371.20746000650398
Rows: 1-100 | Columns: 3

As shown above, a new column has been created, containing the lof score.

Plots - Outliers#

Plots highlighting the outliers can be easily drawn using:

model.plot()

Important

Please refer to Machine Learning - LOF Plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[5]: {'n_neighbors': 10, 'p': 2}

And to manually change some of the parameters:

model.set_params({'p': 3})

Model Register#

As this model is not native, it does not support model management and versioning. However, it is possible to use the SQL code it generates for deployment.

__init__(name: str = None, overwrite_model: bool = False, n_neighbors: int = 20, p: int = 2) None#

Must be overridden in the child class

Methods

__init__([name, overwrite_model, n_neighbors, p])

Must be overridden in the child class

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

fit(input_relation[, X, key_columns, index, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

predict()

Creates a vDataFrame of the model.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes