Loading...

verticapy.machine_learning.vertica.linear_model.Lasso.predict

Lasso.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 149.32787 | 6.79543|21.97475 | 0.00000
 fixed_acidity  |  0.15740  | 0.01240|12.69326 | 0.00000
volatile_acidity| -0.77718  | 0.08681|-8.95259 | 0.00000
  citric_acid   | -0.20956  | 0.09437|-2.22070 | 0.02641
 residual_sugar |  0.04267  | 0.00383|11.14873 | 0.00000
   chlorides    | -0.16152  | 0.40672|-0.39712 | 0.69130
    density     |-145.30390 | 6.91205|-21.02182| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_1163a01e55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_1175081855a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5198 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white5.93743563278198
24.20.2150.235.10.04164.0157.00.996883.420.448.030white5.13407398558553
34.50.190.210.950.03389.0159.00.993323.340.428.050white5.54642043595726
44.70.670.091.00.025.09.00.987223.30.3413.650white6.12058623901189
55.00.170.561.50.02624.0115.00.99063.480.3910.871white5.98714199778553
65.00.310.06.40.04643.0166.00.9943.30.639.960white5.70749267989535
75.00.330.161.50.04910.097.00.99173.480.4410.760white5.78306653480726
85.00.330.2311.80.0323.0158.00.993223.410.6411.860white5.99007341608825
95.00.350.257.80.03124.0116.00.992413.390.411.360white5.91720570095029
105.00.550.148.30.03235.0164.00.99183.530.5112.581white5.89462785466193
115.01.040.241.60.0532.096.00.99343.740.6211.550red4.97159115080174
125.10.1650.225.70.04742.0146.00.99343.180.559.960white5.84697530540359
135.10.250.361.30.03540.078.00.98913.230.6412.171white6.1905874513314
145.10.260.331.10.02746.0113.00.989463.350.4311.471white6.12955169578581
155.10.290.288.30.02627.0107.00.993083.360.3711.060white5.89807711886036
165.10.290.288.30.02627.0107.00.993083.360.3711.060white5.89807711886036
175.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white6.08430565169849
185.10.330.221.60.02718.089.00.98933.510.3812.571white6.1427822979056
195.10.330.221.60.02718.089.00.98933.510.3812.571white6.1427822979056
205.10.350.266.80.03436.0120.00.991883.380.411.560white5.96470953521234
215.20.1550.331.60.02813.059.00.989753.30.8411.981white6.20592940785289
225.20.170.270.70.0311.068.00.992183.30.419.850white5.81503339710233
235.20.240.453.80.02721.0128.00.9923.550.4911.281white5.88181697384005
245.20.310.22.40.02727.0117.00.988863.560.4513.071white6.27632409557705
255.20.310.365.10.03146.0145.00.98973.140.3112.471white6.23529422017415
265.20.340.01.80.0527.063.00.99163.680.7914.060red5.86747236176268
275.20.440.041.40.03643.0119.00.98943.360.3312.181white6.08623490694373
285.20.490.262.30.0923.074.00.99533.710.6212.260red5.17365853284599
295.20.60.077.00.04433.0147.00.99443.330.589.750white5.46672201696617
305.30.2750.247.40.03828.0114.00.993133.380.5111.060white5.9019931044248
315.30.30.21.10.07748.0166.00.99443.30.548.740white5.43130931517092
325.30.5850.077.10.04434.0145.00.99453.340.579.760white5.48385583169775
335.30.760.032.70.04327.093.00.99323.340.389.250white5.35755349119441
345.40.30.31.20.02925.093.00.987423.310.413.671white6.45233407561659
355.40.740.091.70.08916.026.00.994023.670.5611.660red5.20701763345684
365.50.140.274.60.02922.0104.00.99493.340.449.050white5.65690400513441
375.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white6.22944506840199
385.50.180.225.50.03710.086.00.991563.460.4412.250white6.15871766107898
395.50.280.211.60.03223.085.00.990273.420.4212.550white6.10494374465557
405.50.30.251.90.02933.0118.00.989723.360.6612.560white6.17421957600195
415.50.310.293.00.02716.0102.00.990673.230.5611.260white6.06728338037075
425.50.320.131.30.03745.0156.00.991843.260.3810.750white5.84888625884466
435.50.3750.381.70.03617.098.00.991423.290.3910.560white5.83200786152088
445.50.490.031.80.04428.087.00.99083.50.8214.081red5.90903988272865
455.60.120.332.90.04421.073.00.988963.170.3212.981white6.46376268567448
465.60.190.474.50.0319.0112.00.99223.560.4511.260white5.9797655649017
475.60.2050.1612.550.05131.0115.00.995643.40.3810.860white5.87330177216455
485.60.2350.291.20.04733.0127.00.9913.340.511.071white6.01333080193476
495.60.240.342.00.04114.073.00.989813.040.4511.671white6.20698128510088
505.60.250.263.60.03718.0115.00.99043.420.512.660white6.199157829619
515.60.280.46.10.03436.0118.00.991443.210.4312.171white6.10254009015705
525.60.320.337.40.03725.095.00.992683.250.4911.160white5.96092737968939
535.60.390.244.70.03427.077.00.99063.280.3612.750white6.11290081698411
545.60.540.041.70.0495.013.00.99423.720.5811.450red5.38471746034918
555.60.620.031.50.086.013.00.994983.660.6210.140red5.19776102077012
565.60.6950.066.80.0429.084.00.994323.440.4410.250white5.46135837575252
575.70.10.271.30.04721.0100.00.99283.270.469.550white5.8809009977706
585.70.150.4711.40.03549.0128.00.994563.030.3410.581white5.97726940952319
595.70.20.32.50.04638.0125.00.992763.340.59.960white5.85407000680476
605.70.220.216.00.04441.0113.00.998623.220.468.960white5.58432731617941
615.70.220.216.00.04441.0113.00.998623.220.468.960white5.58432731617941
625.70.220.2216.650.04439.0110.00.998553.240.489.060white5.6180409259
635.70.220.2216.650.04439.0110.00.998553.240.489.060white5.6180409259
645.70.220.2216.650.04439.0110.00.998553.240.489.060white5.6180409259
655.70.250.2711.50.0424.0120.00.994113.330.3110.860white6.01030847902499
665.70.2550.651.20.07917.0137.00.993073.20.429.450white5.63213876604181
675.70.260.2417.80.05923.0124.00.997733.30.510.150white5.74855586660385
685.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.96367390264211
695.70.270.169.00.05332.0111.00.994743.360.3710.460white5.81750771897745
705.70.270.321.20.04620.0155.00.99343.80.4110.260white5.64701465612208
715.70.280.351.20.05239.0141.00.991083.440.6911.360white5.96909206137457
725.70.290.167.90.04448.0197.00.995123.210.369.450white5.70126866288598
735.70.320.52.60.04917.0155.00.99273.220.6410.060white5.73139708673753
745.70.40.355.10.02617.0113.00.990523.180.6712.460white6.12780069314258
755.70.430.35.70.03924.098.00.9923.540.6112.371white5.92341373507622
765.70.450.421.10.05161.0197.00.99323.020.49.050white5.51015265288876
775.80.130.265.10.03919.0103.00.994783.360.479.360white5.75114549242952
785.80.170.361.30.03611.070.00.992023.430.6810.471white5.93849160641074
795.80.190.241.30.04438.0128.00.993623.770.610.650white5.71431645110366
805.80.20.241.40.03365.0169.00.990433.590.5612.371white6.17610743418263
815.80.210.321.60.04538.095.00.989463.230.9412.481white6.29911099905354
825.80.230.313.50.04435.0158.00.989983.190.3712.171white6.29133351167667
835.80.250.2413.30.04441.0137.00.99723.340.429.550white5.65950027218724
845.80.260.181.20.03140.0114.00.99083.420.411.071white6.08007714420768
855.80.270.27.30.0442.0145.00.994423.150.489.850white5.80092846277492
865.80.270.214.950.04422.0179.00.99623.370.3710.250white5.86804318342078
875.80.280.181.20.0587.0108.00.992883.230.589.5540white5.75794044358165
885.80.280.31.50.02631.0114.00.989523.320.612.571white6.23898328212383
895.80.280.33.90.02636.0105.00.989633.260.5812.7560white6.32540039445453
905.80.280.342.20.03724.0125.00.989863.360.3312.881white6.20928781213743
915.80.280.344.00.03140.099.00.98963.390.3912.871white6.32483633128211
925.80.290.151.10.02912.083.00.98983.30.411.460white6.20440863419066
935.80.290.333.70.02930.088.00.989943.250.4212.360white6.25727972144577
945.80.30.231.50.03437.0121.00.988712.960.3412.160white6.35451266190907
955.80.310.317.50.05255.0230.00.99493.190.469.850white5.68363919625546
965.80.310.331.20.03623.099.00.99163.180.610.560white5.89273376102011
975.80.3150.1919.40.03128.0106.00.997042.970.410.5560white5.90507766899989
985.80.330.216.050.04726.0166.00.99763.090.468.950white5.66443582670703
995.80.340.167.00.03726.0116.00.99493.460.4510.071white5.6728466066518
1005.80.350.293.20.03441.0151.00.99123.350.5811.633333333333371white6.01380713554551
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.