Loading...

verticapy.machine_learning.vertica.cluster.BisectingKMeans#

class verticapy.machine_learning.vertica.cluster.BisectingKMeans(name: str = None, overwrite_model: bool = False, n_cluster: int = 8, bisection_iterations: int = 1, split_method: Literal['size', 'sum_squares'] = 'sum_squares', min_divisible_cluster_size: int = 2, distance_method: Literal['euclidean'] = 'euclidean', init: Literal['kmeanspp', 'pseudo', 'random'] | list = 'kmeanspp', max_iter: int = 300, tol: float = 0.0001)#

Creates a BisectingKMeans object using the Vertica bisecting k-means algorithm. k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters. Each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), which serves as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. Bisecting k-means combines k-means and hierarchical clustering.

Parameters#

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

n_cluster: int, optional

Number of clusters

bisection_iterations: int, optional

The number of iterations the bisecting KMeans algorithm performs for each bisection step. This corresponds to how many times a standalone KMeans algorithm runs in each bisection step. Setting to a value greater than 1 allows the algorithm to run and choose the best KMeans run within each bisection step. If you are using kmeanspp, the bisection_iterations value is always 1 because kmeanspp is more costly to run but also better than the alternatives, so it does not require multiple runs.

split_method: str, optional

The method used to choose a cluster to bisect/split.

  • size:

    Choose the largest cluster to bisect.

  • sum_squares:

    Choose the cluster with the largest withInSS to bisect.

min_divisible_cluster_size: int, optional

The minimum number of points of a divisible cluster. Must be greater than or equal to 2.

distance_method: str, optional

The distance measure between two data points. Only Euclidean distance is supported at this time.

init: str | list, optional

The method used to find the initial KMeans cluster centers.

  • kmeanspp:

    Uses the KMeans++ method to initialize the centers.

  • pseudo:

    Uses “pseudo center” approach used by Spark, bisects given center without iterating over points.

You can also provide a list with the initial cluster centers.

max_iter: int, optional

The maximum number of iterations the KMeans algorithm performs.

tol: float, optional

Determines whether the KMeans algorithm has converged. The algorithm is considered converged after no center has moved more than a distance of ‘tol’ from the previous iteration.

Attributes#

Many attributes are created during the fitting phase.

tree_:

clusters_: numpy.array

Cluster centers.

p_: int

The p of the p-distances.

children_left_: numpy.array

A list of node IDs, where children_left[i] is the node ID of the left child of node i.

children_right_: numpy.array

A list of node IDs, where children_right[i] is the node ID of the right child of node i.

cluster_score_: numpy.array

The array containing the sizes for each cluster in a clustering analysis.

cluster_score_: numpy.array

The array containing the cluster scores for each cluster in a clustering analysis.

between_cluster_ss_: float

The between-cluster sum of squares (BSS) measures the dispersion between different clusters and is an important metric in evaluating the effectiveness of a clustering algorithm.

total_ss_: float

The total sum of squares (TSS) is used to assess the total dispersion of data points from the overall mean, providing a basis for evaluating the clustering algorithm’s performance.

total_within_cluster_ss_: float

The within-cluster sum of squares (WSS) gauges the dispersion of data points within individual clusters in a clustering analysis. It reflects the compactness of clusters and is instrumental in evaluating the homogeneity of the clusters produced by the algorithm.

elbow_score_: float

The elbow score. It helps identify the optimal number of clusters by observing the point where the rate of WSS reduction slows down, resembling the bend or ‘elbow’ in the plot, indicative of an optimal clustering solution. The bigger the better.

cluster_i_ss_: numpy.array

The array containing the sum of squares (SS) for each cluster in a clustering analysis.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

Model Initialization#

First we import the BisectingKMeans model:

from verticapy.machine_learning.vertica import BisectingKMeans

Then we can create the model:

model = BisectingKMeans(
    n_cluster = 8,
    bisection_iterations = 1,
    split_method = 'sum_squares',
    min_divisible_cluster_size = 2,
    distance_method = "euclidean",
    init = "kmeanspp",
    max_iter = 300,
    tol = 1e-4,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(data, X = ["density", "sulphates"])

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Hint

For clustering and anomaly detection, the use of predictors is optional. In such cases, all available predictors are considered, which can include solely numerical variables or a combination of numerical and categorical variables, depending on the model’s capabilities.

Metrics#

You can also find the cluster positions by:

model.clusters_
Out[4]: 
array([[0.99469663, 0.53126828],
       [0.9957307 , 0.73314636],
       [0.99437236, 0.46796199],
       [0.99489568, 0.52428219],
       [0.99366957, 0.39232591],
       [0.99487069, 0.49384431],
       [0.99493149, 0.56791416],
       [0.99299846, 0.33970859],
       [0.99396948, 0.41583962],
       [0.99485888, 0.48064574],
       [0.99489441, 0.52036036],
       [0.99624909, 1.02443182],
       [0.99566435, 0.69586182],
       [0.99363829, 0.39346041],
       [0.99426018, 0.43548263]])

In order to get the size of each cluster, you can use:

model.cluster_size_
Out[5]: 
array([6497, 1551, 4946, 2835, 2111, 1670, 1165,  652, 1459, 1115,  555,
        176, 1375,  682,  777])

To evaluate the model, various attributes are computed, such as the between sum of squares, the total within clusters sum of squares, and the total sum of squares.

model.between_cluster_ss_
Out[6]: 128.553655

model.total_within_cluster_ss_
Out[7]: 15.346907

model.total_ss_
Out[8]: 143.900562

You also have access to the sum of squares of each cluster.

model.cluster_i_ss_
Out[9]: 
array([7.485924, 6.341603, 0.254458, 0.039501, 0.509403, 0.522764,
       0.092198, 0.101056])

Some other useful attributes can be used to evaluate the model, like the Elbow Score (the bigger it is, the better it is).

model.elbow_score_
Out[10]: 89.3350611097683

Prediction#

Predicting or ranking the dataset is straight-forward:

model.predict(data, ["density", "sulphates"])
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
Integer
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 15

As shown above, a new column has been created, containing the bisected clusters.

Plots - Cluster Plot#

Plots highlighting the different clusters can be easily drawn using:

model.plot()

Plots - Tree#

Tree models can be visualized by drawing their tree plots. For more examples, check out Machine Learning - Tree Plots.

model.plot_tree()
../_images/machine_learning_vertica_tree_bisect_km_.png

Note

The above example may not render properly in the doc because of the huge size of the tree. But it should render nicely in jupyter environment.

In order to plot graph using graphviz separately, you can extract the graphviz DOT file code as follows:

model.to_graphviz()
Out[11]: 'digraph Tree {\ngraph [rankdir = "LR"];\n0 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa"><b> cluster_id: 0 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 6497 </td></tr><tr><td port="port3" border="1" align="left"> score: 1.0 </td></tr></table>>, shape="none"]\n0 -> 1 [label=""]\n0 -> 2 [label=""]\n1 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa"><b> cluster_id: 1 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 1551 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.5 </td></tr></table>>, shape="none"]\n1 -> 11 [label=""]\n1 -> 12 [label=""]\n2 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa"><b> cluster_id: 2 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 4946 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.5 </td></tr></table>>, shape="none"]\n2 -> 3 [label=""]\n2 -> 4 [label=""]\n3 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa"><b> cluster_id: 3 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 2835 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.13 </td></tr></table>>, shape="none"]\n3 -> 5 [label=""]\n3 -> 6 [label=""]\n4 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa"><b> cluster_id: 4 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 2111 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.1 </td></tr></table>>, shape="none"]\n4 -> 7 [label=""]\n4 -> 8 [label=""]\n5 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa"><b> cluster_id: 5 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 1670 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.02 </td></tr></table>>, shape="none"]\n5 -> 9 [label=""]\n5 -> 10 [label=""]\n6 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 6 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 1165 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.01 </td></tr></table>>, shape="none"]\n7 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 7 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 652 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.02 </td></tr></table>>, shape="none"]\n8 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa"><b> cluster_id: 8 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 1459 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.02 </td></tr></table>>, shape="none"]\n8 -> 13 [label=""]\n8 -> 14 [label=""]\n9 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 9 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 1115 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.01 </td></tr></table>>, shape="none"]\n10 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 10 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 555 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.0 </td></tr></table>>, shape="none"]\n11 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 11 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 176 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.47 </td></tr></table>>, shape="none"]\n12 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 12 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 1375 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.4 </td></tr></table>>, shape="none"]\n13 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 13 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 682 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.01 </td></tr></table>>, shape="none"]\n14 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#efc5b5"><b> cluster_id: 14 </b></td></tr><tr><td port="port2" border="1" align="left"> size: 777 </td></tr><tr><td port="port3" border="1" align="left"> score: 0.01 </td></tr></table>>, shape="none"]\n}'

This string can then be copied into a DOT file which can be parsed by graphviz.

Plots - Contour#

In order to understand the parameter space, we can also look at the contour plots:

model.contour()

Note

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to chart_gallery.contour_plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[12]: 
{'n_cluster': 8,
 'bisection_iterations': 1,
 'split_method': 'sum_squares',
 'min_divisible_cluster_size': 2,
 'distance_method': 'euclidean',
 'init': 'kmeanspp',
 'max_iter': 300,
 'tol': 0.0001}

And to manually change some of the parameters:

model.set_params({'n_cluster': 5})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The preceding methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL query equivalent of the XGB model by:

model.to_sql()
Out[14]: '(CASE WHEN "density" IS NULL OR "sulphates" IS NULL THEN NULL ELSE (CASE WHEN POWER(POWER("density" - 0.995730702772405, 2) + POWER("sulphates" - 0.73314635718891, 2), 1/2) < POWER(POWER("density" - 0.994372363526082, 2) + POWER("sulphates" - 0.467961989486454, 2), 1/2) THEN (CASE WHEN POWER(POWER("density" - 0.996249090909091, 2) + POWER("sulphates" - 1.02443181818182, 2), 1/2) < POWER(POWER("density" - 0.995664349090909, 2) + POWER("sulphates" - 0.695861818181818, 2), 1/2) THEN 11 ELSE 12 END) ELSE (CASE WHEN POWER(POWER("density" - 0.994895675485009, 2) + POWER("sulphates" - 0.524282186948854, 2), 1/2) < POWER(POWER("density" - 0.993669573661772, 2) + POWER("sulphates" - 0.3923259118901, 2), 1/2) THEN (CASE WHEN POWER(POWER("density" - 0.994870691616766, 2) + POWER("sulphates" - 0.493844311377245, 2), 1/2) < POWER(POWER("density" - 0.994931489270386, 2) + POWER("sulphates" - 0.567914163090129, 2), 1/2) THEN (CASE WHEN POWER(POWER("density" - 0.994858883408072, 2) + POWER("sulphates" - 0.480645739910314, 2), 1/2) < POWER(POWER("density" - 0.994894414414414, 2) + POWER("sulphates" - 0.52036036036036, 2), 1/2) THEN 9 ELSE 10 END) ELSE 6 END) ELSE (CASE WHEN POWER(POWER("density" - 0.992998458588957, 2) + POWER("sulphates" - 0.339708588957055, 2), 1/2) < POWER(POWER("density" - 0.993969482522276, 2) + POWER("sulphates" - 0.415839616175463, 2), 1/2) THEN 7 ELSE (CASE WHEN POWER(POWER("density" - 0.993638291788856, 2) + POWER("sulphates" - 0.393460410557185, 2), 1/2) < POWER(POWER("density" - 0.99426018018018, 2) + POWER("sulphates" - 0.435482625482626, 2), 1/2) THEN 13 ELSE 14 END) END) END) END) END)'

Note

This SQL query can be directly used in any database.

Deploy SQL

To get the SQL query which uses Vertica functions use below:

model.deploySQL()
Out[15]: 'APPLY_BISECTING_KMEANS("density", "sulphates" USING PARAMETERS model_name = \'"public"."_verticapy_tmp_bisectingkmeans_v_demo_1a1a3fa6e22c11eea3a80242ac120002_"\', match_by_pos = \'true\')'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[0.9, 0.5]]

model.to_python()(X)
Out[17]: array([9])

Hint

The to_python() method is used to retrieve the anomaly score. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, n_cluster: int = 8, bisection_iterations: int = 1, split_method: Literal['size', 'sum_squares'] = 'sum_squares', min_divisible_cluster_size: int = 2, distance_method: Literal['euclidean'] = 'euclidean', init: Literal['kmeanspp', 'pseudo', 'random'] | list = 'kmeanspp', max_iter: int = 300, tol: float = 0.0001) None#

Must be overridden in the child class

Methods

__init__([name, overwrite_model, n_cluster, ...])

Must be overridden in the child class

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([tree_id, show, chart])

Computes the model's features importance.

fit(input_relation[, X, return_report])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_score([tree_id])

Returns the feature importance metrics for the input tree.

get_tree()

Returns a table containing information about the BK-tree.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

plot_tree([pic_path])

Draws the input tree.

plot_voronoi([max_nb_points, plot_crosses, ...])

Draws the Voronoi Graph of the model.

predict(vdf[, X, name, inplace])

Makes predictions using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_graphviz([round_score, percent, ...])

Returns the code for a Graphviz tree.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes