Loading...

verticapy.machine_learning.vertica.cluster.KPrototypes.predict

KPrototypes.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Makes predictions using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example: (SELECT 1) x is valid whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added vDataColumn. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the vDataFrame.

Returns

vDataFrame

the input object.

Examples

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Let’s import the model:

from verticapy.machine_learning.vertica import KMeans

Then we can create the model:

model = KMeans(
    n_cluster = 8,
    init = "kmeanspp",
    max_iter = 300,
    tol = 1e-4,
)

We can then fit the model:

model.fit(data, X = ["density", "sulphates"])


=======
centers
=======
density |sulphates
--------+---------
 0.99587| 0.74618 
 0.99323| 0.35586 
 0.99724| 1.78250 
 0.99491| 0.51801 
 0.99579| 0.89608 
 0.99425| 0.43739 
 0.99527| 0.61599 
 0.99725| 1.14813 


=======
metrics
=======
Evaluation metrics:
     Total Sum of Squares: 143.90056
     Within-Cluster Sum of Squares: 
         Cluster 0: 0.90137629
         Cluster 1: 1.0041838
         Cluster 2: 0.28515756
         Cluster 3: 1.1613605
         Cluster 4: 0.49628017
         Cluster 5: 0.78218577
         Cluster 6: 1.5099108
         Cluster 7: 0.45247629
     Total Within-Cluster Sum of Squares: 6.5929313
     Between-Cluster Sum of Squares: 137.30763
     Between-Cluster SS / Total SS: 95.42%
 Number of iterations performed: 17
 Converged: True
 Call:
kmeans('"public"."_verticapy_tmp_kmeans_v_demo_7c98090c55a311ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_7ca3bb6255a311ef880f0242ac120002_"', '"density", "sulphates"', 8
USING PARAMETERS max_iterations=300, epsilon=0.0001, init_method='kmeanspp', distance_method='euclidean')

Predicting or ranking the dataset is straight-forward:

model.predict(data, ["density", "sulphates"], name = "Cluster IDs")
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
Cluster IDs
Integer
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white5
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white1
34.20.170.361.80.02993.0161.00.989993.650.8912.071white4
44.20.2150.235.10.04164.0157.00.996883.420.448.030white5
54.40.320.394.30.0331.0127.00.989043.460.3612.881white1
64.40.460.12.80.02431.0111.00.988163.480.3413.160white1
74.40.540.095.10.03852.097.00.990223.410.412.271white5
84.50.190.210.950.03389.0159.00.993323.340.428.050white5
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white3
104.60.520.152.10.0548.065.00.99343.90.5613.140red3
114.70.1450.291.00.04235.090.00.99083.760.4911.360white3
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white5
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white4
144.70.60.172.30.05817.0106.00.99323.850.612.960red6
154.70.670.091.00.025.09.00.987223.30.3413.650white1
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white4
174.80.130.321.20.04240.098.00.98983.420.6411.871white6
184.80.170.282.90.0322.0111.00.99023.380.3411.371white1
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white3
204.80.2250.381.20.07447.0130.00.991323.310.410.360white5
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white1
224.80.290.231.10.04438.0180.00.989243.280.3411.960white1
234.80.330.06.50.02834.0163.00.99373.350.619.950white6
244.80.340.06.50.02833.0163.00.99393.360.619.960white6
254.80.650.121.10.0134.010.00.992463.320.3613.540white1
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white3
274.90.330.311.20.01639.0150.00.987133.330.5914.081white6
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5
304.90.3450.341.00.06832.0143.00.991383.240.410.150white5
314.90.3450.341.00.06832.0143.00.991383.240.410.150white5
324.90.420.02.10.04816.042.00.991543.710.7414.071red0
334.90.470.171.90.03560.0148.00.989643.270.3511.560white1
345.00.170.561.50.02624.0115.00.99063.480.3910.871white1
355.00.20.41.90.01520.098.00.98973.370.5512.0560white3
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white3
375.00.240.195.00.04317.0101.00.994383.670.5710.050white6
385.00.240.212.20.03931.0100.00.990983.690.6211.760white6
395.00.240.341.10.03449.0158.00.987743.320.3213.171white1
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white0
415.00.270.324.50.03258.0178.00.989563.450.3112.671white1
425.00.270.324.50.03258.0178.00.989563.450.3112.671white1
435.00.270.41.20.07642.0124.00.992043.320.4710.160white5
445.00.290.545.70.03554.0155.00.989763.270.3412.981white1
455.00.30.333.70.0354.0173.00.98873.360.313.071white1
465.00.310.06.40.04643.0166.00.9943.30.639.960white6
475.00.330.161.50.04910.097.00.99173.480.4410.760white5
485.00.330.161.50.04910.097.00.99173.480.4410.760white5
495.00.330.161.50.04910.097.00.99173.480.4410.760white5
505.00.330.184.60.03240.0124.00.991143.180.411.060white5
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white6
525.00.350.257.80.03124.0116.00.992413.390.411.360white5
535.00.350.257.80.03124.0116.00.992413.390.411.360white5
545.00.380.011.60.04826.060.00.990843.70.7514.060red0
555.00.40.54.30.04629.080.00.99023.490.6613.660red6
565.00.420.242.00.0619.050.00.99173.720.7414.081red0
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white6
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white4
595.00.550.148.30.03235.0164.00.99183.530.5112.581white3
605.00.610.121.30.00965.0100.00.98743.260.3713.550white1
615.00.740.01.20.04116.046.00.992584.010.5912.560red6
625.01.020.041.40.04541.085.00.99383.750.4810.540red3
635.01.040.241.60.0532.096.00.99343.740.6211.550red6
645.10.110.321.60.02812.090.00.990083.570.5212.260white3
655.10.140.250.70.03915.089.00.99193.220.439.260white5
665.10.1650.225.70.04742.0146.00.99343.180.559.960white3
675.10.210.281.40.04748.0148.00.991683.50.4910.450white3
685.10.230.181.00.05313.099.00.989563.220.3911.550white1
695.10.250.361.30.03540.078.00.98913.230.6412.171white6
705.10.260.331.10.02746.0113.00.989463.350.4311.471white5
715.10.260.346.40.03426.099.00.994493.230.419.260white5
725.10.290.288.30.02627.0107.00.993083.360.3711.060white1
735.10.290.288.30.02627.0107.00.993083.360.3711.060white1
745.10.30.32.30.04840.0150.00.989443.290.4612.260white5
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white3
765.10.310.30.90.03728.0152.00.9923.540.5610.160white3
775.10.330.221.60.02718.089.00.98933.510.3812.571white1
785.10.330.221.60.02718.089.00.98933.510.3812.571white1
795.10.330.221.60.02718.089.00.98933.510.3812.571white1
805.10.330.276.70.02244.0129.00.992213.360.3911.071white1
815.10.350.266.80.03436.0120.00.991883.380.411.560white5
825.10.350.266.80.03436.0120.00.991883.380.411.560white5
835.10.350.266.80.03436.0120.00.991883.380.411.560white5
845.10.390.211.70.02715.072.00.98943.50.4512.560white5
855.10.420.01.80.04418.088.00.991573.680.7313.671red0
865.10.420.011.50.01725.0102.00.98943.380.3612.371white1
875.10.470.021.30.03418.044.00.99213.90.6212.860red6
885.10.510.182.10.04216.0101.00.99243.460.8712.971red4
895.10.520.062.70.05230.079.00.99323.320.439.350white5
905.10.5850.01.70.04414.086.00.992643.560.9412.971red4
915.20.1550.331.60.02813.059.00.989753.30.8411.981white4
925.20.1550.331.60.02813.059.00.989753.30.8411.981white4
935.20.160.340.80.02926.077.00.991553.250.5110.160white3
945.20.170.270.70.0311.068.00.992183.30.419.850white5
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white5
965.20.20.273.20.04716.093.00.992353.440.5310.171white3
975.20.210.311.70.04817.061.00.989533.240.3712.071white1
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white5
995.20.240.157.10.04332.0134.00.993783.240.489.960white3
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white3
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.