Loading...

verticapy.machine_learning.vertica.tree.DecisionTreeRegressor#

class verticapy.machine_learning.vertica.tree.DecisionTreeRegressor(name: str = None, overwrite_model: bool = False, max_features: Literal['auto', 'max'] | int = 'auto', max_leaf_nodes: int | float | Decimal = 1000000000.0, max_depth: int = 100, min_samples_leaf: int = 1, min_info_gain: int | float | Decimal = 0.0, nbins: int = 32)#

A DecisionTreeRegressor consisting of a single tree.

Parameters#

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

max_features: str / int, optional

The number of randomly chosen features from which to pick the best feature to split on a given tree node. It can be an integer or one of the two following methods:

  • auto:

    square root of the total number of predictors.

  • max:

    number of predictors.

max_leaf_nodes: PythonNumber, optional

The maximum number of leaf nodes for a tree in the forest, an integer between 1 and 1e9, inclusive.

max_depth: int, optional

The maximum depth for growing each tree, an integer between 1 and 100, inclusive.

min_samples_leaf: int, optional

The minimum number of samples each branch must have after a node is split, an integer between 1 and 1e6, inclusive. Any split that results in fewer remaining samples is discarded.

min_info_gain: PythonNumber, optional

The minimum threshold for including a split, a float between 0.0 and 1.0, inclusive. A split with information gain less than this threshold is discarded.

nbins: int, optional

The number of bins to use for continuous features, an integer between 2 and 1000, inclusive.

Attributes#

Many attributes are created during the fitting phase.

trees_: list of one BinaryTreeRegressor

One tree model which is instance of BinaryTreeRegressor. It possess various attributes. For more detailed information, refer to the documentation for BinaryTreeRegressor().

features_importance_: numpy.array

The importance of features. It is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Important

Many tree-based models inherit from the RandomForest base class, and it’s recommended to use it directly for access to a wider range of options.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization#

First we import the DecisionTreeRegressor model:

from verticapy.machine_learning.vertica import DecisionTreeRegressor

Then we can create the model:

model = DecisionTreeRegressor(
    max_features = "auto",
    max_leaf_nodes = 32,
    max_depth = 3,
    min_samples_leaf = 5,
    min_info_gain = 0.0,
    nbins = 32
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density"
    ],
    "quality",
    test,
)

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Features Importance#

We can conveniently get the features importance:

result = model.features_importance()

Note

In models such as RandomForest, feature importance is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them.

Metrics#

We can get the entire report using:

model.report()
value
explained_variance0.119037373735659
max_error2.68092601912431
median_absolute_error0.513207547169809
mean_absolute_error0.658531720210043
mean_squared_error0.683585392920184
root_mean_squared_error0.826792230805409
r20.117387553715895
r2_adj0.113288734305906
aic-479.981736301154
bic-443.958950785544
Rows: 1-10 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["mse", "r2"]).

You can utilize the score() function to calculate various regression metrics, with the R-squared being the default.

model.score()
Out[4]: 0.117387553715895

Prediction#

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density"
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white5.52083333333333
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white6.50338600451467
34.20.2150.235.10.04164.0157.00.996883.420.448.030white5.52083333333333
44.60.520.152.10.0548.065.00.99343.90.5613.140red5.52083333333333
54.70.1450.291.00.04235.090.00.99083.760.4911.360white6.10162601626016
64.70.7850.03.40.03623.0134.00.989813.530.9213.860white5.7
74.80.170.282.90.0322.0111.00.99023.380.3411.371white6.50338600451467
84.80.260.2310.60.03423.0111.00.992743.460.2811.571white5.52083333333333
94.80.340.06.50.02833.0163.00.99393.360.619.960white5.52083333333333
104.90.330.311.20.01639.0150.00.987133.330.5914.081white6.50338600451467
115.00.170.561.50.02624.0115.00.99063.480.3910.871white6.10162601626016
125.00.240.212.20.03931.0100.00.990983.690.6211.760white6.10162601626016
135.00.290.545.70.03554.0155.00.989763.270.3412.981white6.50338600451467
145.00.330.2311.80.0323.0158.00.993223.410.6411.860white5.52083333333333
155.00.350.257.80.03124.0116.00.992413.390.411.360white5.52083333333333
165.00.420.242.00.0619.050.00.99173.720.7414.081red6.10162601626016
175.10.210.281.40.04748.0148.00.991683.50.4910.450white6.10162601626016
185.10.250.361.30.03540.078.00.98913.230.6412.171white6.50338600451467
195.10.290.288.30.02627.0107.00.993083.360.3711.060white5.68092601912431
205.10.290.288.30.02627.0107.00.993083.360.3711.060white5.68092601912431
215.10.310.30.90.03728.0152.00.9923.540.5610.160white6.10162601626016
225.10.330.221.60.02718.089.00.98933.510.3812.571white6.50338600451467
235.10.330.221.60.02718.089.00.98933.510.3812.571white6.50338600451467
245.10.350.266.80.03436.0120.00.991883.380.411.560white6.51320754716981
255.10.5850.01.70.04414.086.00.992643.560.9412.971red5.52083333333333
265.20.160.340.80.02926.077.00.991553.250.5110.160white6.10162601626016
275.20.280.291.10.02818.069.00.991683.240.5410.060white6.10162601626016
285.20.360.021.60.03124.0104.00.98963.440.3512.260white6.50338600451467
295.20.4050.151.450.03810.044.00.991253.520.411.640white6.10162601626016
305.30.30.21.10.07748.0166.00.99443.30.548.740white5.52083333333333
315.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.68092601912431
325.30.360.276.30.02840.0132.00.991863.370.411.660white6.51320754716981
335.30.5850.077.10.04434.0145.00.99453.340.579.760white5.52083333333333
345.30.60.341.40.0313.060.00.988543.270.3813.060white5.7
355.40.150.322.50.03710.051.00.988783.040.5812.660white6.50338600451467
365.40.220.291.20.04569.0152.00.991783.760.6311.071white6.10162601626016
375.40.290.473.00.05247.0145.00.9933.290.7510.060white5.68092601912431
385.40.3750.43.30.05429.0147.00.994823.420.529.150white5.68092601912431
395.40.460.152.10.02629.0130.00.989533.390.7713.481white6.50338600451467
405.40.460.152.10.02629.0130.00.989533.390.7713.481white6.50338600451467
415.40.590.077.00.04536.0147.00.99443.340.579.760white5.52083333333333
425.40.8350.081.20.04613.093.00.99243.570.8513.071red5.52083333333333
435.50.120.331.00.03823.0131.00.991643.250.459.850white6.10162601626016
445.50.150.3214.00.03116.099.00.994373.260.3811.581white6.04651162790698
455.50.160.224.50.0330.0102.00.99383.240.369.460white5.52083333333333
465.50.230.192.20.04439.0161.00.992093.190.4310.460white5.52083333333333
475.50.350.351.10.04514.0167.00.9923.340.689.960white6.10162601626016
485.60.120.332.90.04421.073.00.988963.170.3212.981white6.50338600451467
495.60.130.274.80.02822.0104.00.99483.340.459.260white6.04651162790698
505.60.180.271.70.0331.0103.00.988923.350.3712.960white6.50338600451467
515.60.1850.491.10.0328.0117.00.99183.550.4510.360white6.10162601626016
525.60.190.391.10.04317.067.00.99183.230.5310.360white6.10162601626016
535.60.2050.1612.550.05131.0115.00.995643.40.3810.860white5.52083333333333
545.60.210.244.40.02737.0150.00.9913.30.3111.571white6.51320754716981
555.60.210.41.30.04181.0147.00.99013.220.9511.681white6.50338600451467
565.60.220.321.20.02429.097.00.988233.20.4613.0571white6.50338600451467
575.60.250.263.60.03718.0115.00.99043.420.512.660white6.50338600451467
585.60.260.511.40.02925.093.00.994283.230.4910.560white5.68092601912431
595.60.280.284.20.04452.0158.00.9923.350.4410.771white6.51320754716981
605.60.30.16.40.04334.0142.00.993823.140.489.850white5.52083333333333
615.60.310.371.40.07412.096.00.99543.320.589.250red5.68092601912431
625.60.320.337.40.03725.095.00.992683.250.4911.160white5.68092601912431
635.60.350.371.00.0386.072.00.99023.370.3411.450white6.50338600451467
645.60.390.244.70.03427.077.00.99063.280.3612.750white6.51320754716981
655.60.620.031.50.086.013.00.994983.660.6210.140red5.52083333333333
665.60.660.02.20.0873.011.00.993783.710.6312.871red5.52083333333333
675.60.660.02.20.0873.011.00.993783.710.6312.871red5.52083333333333
685.60.9150.02.10.04117.078.00.993463.680.7311.450red5.52083333333333
695.70.1350.34.60.04219.0101.00.99463.310.429.360white6.04651162790698
705.70.150.283.70.04557.0151.00.99133.220.2711.260white6.51320754716981
715.70.20.2413.80.04744.0112.00.998372.970.668.860white5.52083333333333
725.70.210.242.30.04760.0189.00.9953.650.7210.160white5.52083333333333
735.70.210.251.10.03526.081.00.99023.310.5211.460white6.50338600451467
745.70.220.216.00.04441.0113.00.998623.220.468.960white5.52083333333333
755.70.220.216.00.04441.0113.00.998623.220.468.960white5.52083333333333
765.70.220.2216.650.04439.0110.00.998553.240.489.060white5.52083333333333
775.70.240.476.30.06935.0182.00.993913.110.469.7550white5.68092601912431
785.70.2450.331.10.04928.0150.00.99273.130.429.350white5.68092601912431
795.70.250.229.80.04950.0125.00.995713.20.4510.160white5.52083333333333
805.70.250.2612.50.04952.5106.00.996913.080.459.460white5.68092601912431
815.70.260.274.10.20173.5189.50.99423.270.389.460white5.68092601912431
825.70.270.321.20.04620.0155.00.99343.80.4110.260white5.68092601912431
835.70.280.2417.50.04460.0167.00.99893.310.449.450white5.52083333333333
845.70.280.361.80.04138.090.00.990023.270.9811.971white6.50338600451467
855.70.320.181.40.02926.0104.00.99063.440.3711.060white6.10162601626016
865.70.320.384.750.03323.094.00.9913.420.4211.871white6.51320754716981
875.70.360.344.20.02621.077.00.99073.410.4511.960white6.51320754716981
885.70.390.254.90.03349.0113.00.989663.260.5813.171white6.50338600451467
895.70.450.421.10.05161.0197.00.99323.020.49.050white5.68092601912431
905.70.6950.066.80.0429.084.00.994323.440.4410.250white5.52083333333333
915.80.120.211.30.05635.0121.00.99083.320.3311.460white6.10162601626016
925.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.52083333333333
935.80.150.280.80.03743.0127.00.991983.240.519.350white6.10162601626016
945.80.150.315.90.0367.073.00.991523.20.4311.960white6.51320754716981
955.80.180.371.20.03619.074.00.988533.090.4912.771white6.50338600451467
965.80.190.334.20.03849.0133.00.991073.160.4211.371white6.51320754716981
975.80.230.211.50.04421.0110.00.991383.30.5711.060white6.10162601626016
985.80.240.281.40.03840.076.00.987113.10.2913.971white6.50338600451467
995.80.240.391.50.05437.0158.00.99323.210.529.360white5.68092601912431
1005.80.270.27.30.0442.0145.00.994423.150.489.850white5.52083333333333
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Plots#

Tree models can be visualized by drawing their tree plots. For more examples, check out Machine Learning - Tree Plots.

model.plot_tree()
../_images/machine_learning_vertica_tree_decision.png

Note

The above example may not render properly in the doc because of the huge size of the tree. But it should render nicely in jupyter environment.

In order to plot graph using graphviz separately, you can extract the graphviz DOT file code as follows:

model.to_graphviz()
Out[5]: 'digraph Tree {\ngraph [bgcolor="#FFFFFF00"];\n0 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n0 -> 1 [label="<= 0.992073", color="#666666", fontcolor="#666666"]\n0 -> 2 [label="> 0.992073", color="#666666", fontcolor="#666666"]\n1 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n1 -> 3 [label="<= 0.990455", color="#666666", fontcolor="#666666"]\n1 -> 4 [label="> 0.990455", color="#666666", fontcolor="#666666"]\n2 [label="\\"citric_acid\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n2 -> 5 [label="<= 0.259375", color="#666666", fontcolor="#666666"]\n2 -> 6 [label="> 0.259375", color="#666666", fontcolor="#666666"]\n3 [label="\\"volatile_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n3 -> 7 [label="<= 0.54875", color="#666666", fontcolor="#666666"]\n3 -> 8 [label="> 0.54875", color="#666666", fontcolor="#666666"]\n4 [label="\\"residual_sugar\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n4 -> 9 [label="<= 2.6375", color="#666666", fontcolor="#666666"]\n4 -> 10 [label="> 2.6375", color="#666666", fontcolor="#666666"]\n5 [label="\\"fixed_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n5 -> 11 [label="<= 5.98125", color="#666666", fontcolor="#666666"]\n5 -> 12 [label="> 5.98125", color="#666666", fontcolor="#666666"]\n6 [label="\\"volatile_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n6 -> 13 [label="<= 0.220625", color="#666666", fontcolor="#666666"]\n6 -> 14 [label="> 0.220625", color="#666666", fontcolor="#666666"]\n7 [label="6.503386", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n8 [label="5.7", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n9 [label="6.101626", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n10 [label="6.513208", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n11 [label="5.520833", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n12 [label="5.353647", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n13 [label="6.046512", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n14 [label="5.680926", fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n}'

This string can then be copied into a DOT file which can beparsed by graphviz.

Contour plot is another useful plot that can be produced for models with two predictors.

model.contour()

Important

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The following methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL code by:

model.to_sql()
Out[6]: '(CASE WHEN "density" < 0.992073 THEN (CASE WHEN "density" < 0.990455 THEN (CASE WHEN "volatile_acidity" < 0.54875 THEN 6.503386 ELSE 5.7 END) ELSE (CASE WHEN "residual_sugar" < 2.6375 THEN 6.101626 ELSE 6.513208 END) END) ELSE (CASE WHEN "citric_acid" < 0.259375 THEN (CASE WHEN "fixed_acidity" < 5.98125 THEN 5.520833 ELSE 5.353647 END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN 6.046512 ELSE 5.680926 END) END) END)'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[8]: array([6.503386])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, max_features: Literal['auto', 'max'] | int = 'auto', max_leaf_nodes: int | float | Decimal = 1000000000.0, max_depth: int = 100, min_samples_leaf: int = 1, min_info_gain: int | float | Decimal = 0.0, nbins: int = 32) None#

Must be overridden in the child class

Methods

__init__([name, overwrite_model, ...])

Must be overridden in the child class

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([tree_id, show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_score([tree_id])

Returns the feature importance metrics for the input tree.

get_tree([tree_id])

Returns a table with all the input tree information.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

plot_tree([tree_id, pic_path])

Draws the input tree.

predict(vdf[, X, name, inplace])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

regression_report([metrics])

Computes a regression report

report([metrics])

Computes a regression report

score([metric])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_graphviz([tree_id, classes_color, ...])

Returns the code for a Graphviz tree.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes