
verticapy.machine_learning.vertica.tree.DecisionTreeRegressor¶
- class verticapy.machine_learning.vertica.tree.DecisionTreeRegressor(name: str = None, overwrite_model: bool = False, max_features: Literal['auto', 'max'] | int = 'auto', max_leaf_nodes: Annotated[int | float | Decimal, 'Python Numbers'] = 1000000000.0, max_depth: int = 100, min_samples_leaf: int = 1, min_info_gain: Annotated[int | float | Decimal, 'Python Numbers'] = 0.0, nbins: int = 32)¶
A DecisionTreeRegressor consisting of a single tree.
Parameters¶
- name: str, optional
Name of the model. The model is stored in the database.
- overwrite_model: bool, optional
If set to
True
, training a model with the same name as an existing model overwrites the existing model.- max_features: str / int, optional
The number of randomly chosen features from which to pick the best feature to split on a given tree node. It can be an integer or one of the two following methods:
- auto:
square root of the total number of predictors.
- max:
number of predictors.
- max_leaf_nodes: PythonNumber, optional
The maximum number of leaf nodes for a tree in the forest, an integer between 1 and 1e9, inclusive.
- max_depth: int, optional
The maximum depth for growing each tree, an integer between 1 and 100, inclusive.
- min_samples_leaf: int, optional
The minimum number of samples each branch must have after a node is split, an integer between 1 and 1e6, inclusive. Any split that results in fewer remaining samples is discarded.
- min_info_gain: PythonNumber, optional
The minimum threshold for including a split, a float between 0.0 and 1.0, inclusive. A split with information gain less than this threshold is discarded.
- nbins: int, optional
The number of bins to use for continuous features, an integer between 2 and 1000, inclusive.
Attributes¶
Many attributes are created during the fitting phase.
- trees_: list of one BinaryTreeRegressor
One tree model which is instance of
BinaryTreeRegressor
. It possess various attributes. For more detailed information, refer to the documentation forBinaryTreeRegressor()
.- features_importance_: numpy.array
The importance of features. It is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them. It is necessary to use the
features_importance()
method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.
Note
All attributes can be accessed using the
get_attributes()
method.Note
Several other attributes can be accessed by using the
get_vertica_attributes()
method.Examples¶
The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.
Important
Many tree-based models inherit from the
RandomForest
base class, and it’s recommended to use it directly for access to a wider range of options.Load data for machine learning¶
We import
verticapy
:import verticapy as vp
Hint
By assigning an alias to
verticapy
, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions fromverticapy
are used as intended without interfering with functions from other libraries.For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Note
VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.
You can easily divide your dataset into training and testing subsets using the
vDataFrame.
train_test_split()
method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Warning
In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the
vDataFrame.
to_db()
method to save your results intotables
ortemporary tables
. This will help enhance the overall performance of the process.Model Initialization¶
First we import the
DecisionTreeRegressor
model:from verticapy.machine_learning.vertica import DecisionTreeRegressor
Then we can create the model:
model = DecisionTreeRegressor( max_features = "auto", max_leaf_nodes = 32, max_depth = 3, min_samples_leaf = 5, min_info_gain = 0.0, nbins = 32 )
Hint
In
verticapy
1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.Important
The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.
Model Training¶
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "quality", test, ) =========== call_string =========== SELECT rf_regressor('"public"."_verticapy_tmp_randomforestregressor_v_demo_0e011f1855a511ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_0e0fad1255a511ef880f0242ac120002_"', 'quality', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS exclude_columns='', ntree=1, mtry=3, sampling_size=1, max_depth=3, max_breadth=32, min_leaf_size=5, min_info_gain=0, nbins=32); ======= details ======= predictor | type ----------------+---------------- fixed_acidity |float or numeric volatile_acidity|float or numeric citric_acid |float or numeric residual_sugar |float or numeric chlorides |float or numeric density |float or numeric =============== Additional Info =============== Name |Value ------------------+----- tree_count | 1 rejected_row_count| 0 accepted_row_count|5191
Important
To train a model, you can directly use the
vDataFrame
or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. Inverticapy
, we don’t work usingX
matrices andy
vectors. Instead, we work directly with lists of predictors and the response name.Features Importance¶
We can conveniently get the features importance:
result = model.features_importance()
Note
In models such as
RandomForest
, feature importance is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them.Metrics¶
We can get the entire report using:
model.report()
value explained_variance 0.169255958366399 max_error 3.52 median_absolute_error 0.505729945191833 mean_absolute_error 0.643400669026207 mean_squared_error 0.644441390563995 root_mean_squared_error 0.802771069834978 r2 0.162933286699923 r2_adj 0.159066927747035 aic -559.657259173879 bic -523.595976370202 Rows: 1-10 | Columns: 2Important
Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g.
model.report(metrics = ["mse", "r2"])
.You can utilize the
score()
function to calculate various regression metrics, with the R-squared being the default.model.score() Out[4]: 0.162933286699923
Prediction¶
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 6.79831932773109 2 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 6.14699331848552 3 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 6.14699331848552 4 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 6.79831932773109 5 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 6.14699331848552 6 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 6.14477211796247 7 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 6.79831932773109 8 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 6.52 9 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 6.14699331848552 10 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 6.38571428571428 11 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 6.38571428571428 12 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 6.38571428571428 13 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 5.75169300225734 14 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 6.14477211796247 15 5.2 0.34 0.0 1.8 0.05 27.0 63.0 0.9916 3.68 0.79 14.0 6 0 red 6.14699331848552 16 5.2 0.405 0.15 1.45 0.038 10.0 44.0 0.99125 3.52 0.4 11.6 4 0 white 6.14699331848552 17 5.2 0.44 0.04 1.4 0.036 43.0 119.0 0.9894 3.36 0.33 12.1 8 1 white 6.38571428571428 18 5.3 0.16 0.39 1.0 0.028 40.0 101.0 0.99156 3.57 0.59 10.6 6 0 white 6.14699331848552 19 5.3 0.3 0.3 1.2 0.029 25.0 93.0 0.98742 3.31 0.4 13.6 7 1 white 6.38571428571428 20 5.3 0.32 0.12 6.6 0.043 22.0 141.0 0.9937 3.36 0.6 10.4 6 0 white 5.75169300225734 21 5.3 0.32 0.23 9.65 0.026 26.0 119.0 0.99168 3.18 0.53 12.2 6 0 white 6.52 22 5.3 0.33 0.3 1.2 0.048 25.0 119.0 0.99045 3.32 0.62 11.3 6 0 white 6.14699331848552 23 5.3 0.43 0.11 1.1 0.029 6.0 51.0 0.99076 3.51 0.48 11.2 4 0 white 6.14699331848552 24 5.3 0.585 0.07 7.1 0.044 34.0 145.0 0.9945 3.34 0.57 9.7 6 0 white 6.14477211796247 25 5.4 0.205 0.16 12.55 0.051 31.0 115.0 0.99564 3.4 0.38 10.8 6 0 white 6.0625 26 5.4 0.23 0.36 1.5 0.03 74.0 121.0 0.98976 3.24 0.99 12.1 7 1 white 6.38571428571428 27 5.4 0.255 0.33 1.2 0.051 29.0 122.0 0.99048 3.37 0.66 11.3 6 0 white 6.14699331848552 28 5.4 0.5 0.13 5.0 0.028 12.0 107.0 0.99079 3.48 0.88 13.5 7 1 white 6.52 29 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 6.79831932773109 30 5.5 0.12 0.33 1.0 0.038 23.0 131.0 0.99164 3.25 0.45 9.8 5 0 white 6.14699331848552 31 5.5 0.29 0.3 1.1 0.022 20.0 110.0 0.98869 3.34 0.38 12.8 7 1 white 6.38571428571428 32 5.5 0.335 0.3 2.5 0.071 27.0 128.0 0.9924 3.14 0.51 9.6 6 0 white 5.75169300225734 33 5.6 0.12 0.33 2.9 0.044 21.0 73.0 0.98896 3.17 0.32 12.9 8 1 white 6.79831932773109 34 5.6 0.18 0.29 2.3 0.04 5.0 47.0 0.99126 3.07 0.45 10.1 4 0 white 6.14699331848552 35 5.6 0.18 0.58 1.25 0.034 29.0 129.0 0.98984 3.51 0.6 12.0 7 1 white 6.38571428571428 36 5.6 0.185 0.19 7.1 0.048 36.0 110.0 0.99438 3.26 0.41 9.5 6 0 white 6.14477211796247 37 5.6 0.2 0.36 2.5 0.048 16.0 125.0 0.99282 3.49 0.49 10.0 6 0 white 5.75169300225734 38 5.6 0.2 0.66 10.2 0.043 78.0 175.0 0.9945 2.98 0.43 10.4 7 1 white 6.14477211796247 39 5.6 0.22 0.32 1.2 0.024 29.0 97.0 0.98823 3.2 0.46 13.05 7 1 white 6.38571428571428 40 5.6 0.28 0.28 4.2 0.044 52.0 158.0 0.992 3.35 0.44 10.7 7 1 white 5.75169300225734 41 5.6 0.28 0.4 6.1 0.034 36.0 118.0 0.99144 3.21 0.43 12.1 7 1 white 6.52 42 5.6 0.295 0.26 1.1 0.035 40.0 102.0 0.99154 3.47 0.56 10.6 6 0 white 6.14699331848552 43 5.6 0.35 0.37 1.0 0.038 6.0 72.0 0.9902 3.37 0.34 11.4 5 0 white 6.38571428571428 44 5.6 0.41 0.22 7.1 0.05 44.0 154.0 0.9931 3.3 0.4 10.5 5 0 white 6.14477211796247 45 5.6 0.41 0.24 1.9 0.034 10.0 53.0 0.98815 3.32 0.5 13.5 7 1 white 6.38571428571428 46 5.6 0.5 0.09 2.3 0.049 17.0 99.0 0.9937 3.63 0.63 13.0 5 0 red 5.75169300225734 47 5.7 0.1 0.27 1.3 0.047 21.0 100.0 0.9928 3.27 0.46 9.5 5 0 white 5.75169300225734 48 5.7 0.21 0.24 2.3 0.047 60.0 189.0 0.995 3.65 0.72 10.1 6 0 white 5.75169300225734 49 5.7 0.21 0.25 1.1 0.035 26.0 81.0 0.9902 3.31 0.52 11.4 6 0 white 6.38571428571428 50 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 6.0625 51 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 6.0625 52 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 6.0625 53 5.7 0.22 0.29 3.5 0.04 27.0 146.0 0.98999 3.17 0.36 12.1 6 0 white 6.79831932773109 54 5.7 0.22 0.33 1.9 0.036 37.0 110.0 0.98945 3.26 0.58 12.4 6 0 white 6.38571428571428 55 5.7 0.23 0.28 9.65 0.025 26.0 121.0 0.9925 3.28 0.38 11.3 6 0 white 6.14477211796247 56 5.7 0.24 0.47 6.3 0.069 35.0 182.0 0.99391 3.11 0.46 9.75 5 0 white 5.75169300225734 57 5.7 0.25 0.22 9.8 0.049 50.0 125.0 0.99571 3.2 0.45 10.1 6 0 white 5.49427005480817 58 5.7 0.25 0.26 12.5 0.049 52.5 106.0 0.99691 3.08 0.45 9.4 6 0 white 5.49427005480817 59 5.7 0.25 0.27 10.8 0.05 58.0 116.0 0.99592 3.1 0.5 9.8 6 0 white 5.49427005480817 60 5.7 0.25 0.32 12.2 0.041 43.0 127.0 0.99524 3.23 0.53 10.4 7 1 white 5.49427005480817 61 5.7 0.26 0.24 17.8 0.059 23.0 124.0 0.99773 3.3 0.5 10.1 5 0 white 5.49427005480817 62 5.7 0.26 0.27 4.1 0.201 73.5 189.5 0.9942 3.27 0.38 9.4 6 0 white 5.75169300225734 63 5.7 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 6.79831932773109 64 5.7 0.29 0.16 7.9 0.044 48.0 197.0 0.99512 3.21 0.36 9.4 5 0 white 6.14477211796247 65 5.7 0.36 0.21 6.7 0.038 51.0 166.0 0.9941 3.29 0.63 10.0 6 0 white 5.75169300225734 66 5.7 0.36 0.34 4.2 0.026 21.0 77.0 0.9907 3.41 0.45 11.9 6 0 white 6.52 67 5.7 0.6 0.0 1.4 0.063 11.0 18.0 0.99191 3.45 0.56 12.2 6 0 red 6.14699331848552 68 5.7 0.695 0.06 6.8 0.042 9.0 84.0 0.99432 3.44 0.44 10.2 5 0 white 6.14477211796247 69 5.8 0.13 0.22 12.7 0.058 24.0 183.0 0.9956 3.32 0.42 11.7 6 0 white 6.0625 70 5.8 0.13 0.26 5.1 0.039 19.0 103.0 0.99478 3.36 0.47 9.3 6 0 white 5.75169300225734 71 5.8 0.15 0.28 0.8 0.037 43.0 127.0 0.99198 3.24 0.51 9.3 5 0 white 6.14699331848552 72 5.8 0.15 0.32 1.2 0.037 14.0 119.0 0.99137 3.19 0.5 10.2 6 0 white 6.14699331848552 73 5.8 0.18 0.37 1.2 0.036 19.0 74.0 0.98853 3.09 0.49 12.7 7 1 white 6.38571428571428 74 5.8 0.19 0.24 1.3 0.044 38.0 128.0 0.99362 3.77 0.6 10.6 5 0 white 5.75169300225734 75 5.8 0.2 0.34 1.0 0.035 40.0 86.0 0.98993 3.5 0.42 11.7 5 0 white 6.38571428571428 76 5.8 0.23 0.21 1.5 0.044 21.0 110.0 0.99138 3.3 0.57 11.0 6 0 white 6.14699331848552 77 5.8 0.24 0.28 1.4 0.038 40.0 76.0 0.98711 3.1 0.29 13.9 7 1 white 6.38571428571428 78 5.8 0.26 0.24 9.2 0.044 55.0 152.0 0.9961 3.31 0.38 9.4 5 0 white 5.49427005480817 79 5.8 0.27 0.2 7.3 0.04 42.0 145.0 0.99442 3.15 0.48 9.8 5 0 white 6.14477211796247 80 5.8 0.27 0.27 12.3 0.045 55.0 170.0 0.9972 3.28 0.42 9.3 6 0 white 5.49427005480817 81 5.8 0.27 0.4 1.2 0.076 47.0 130.0 0.99185 3.13 0.45 10.3 6 0 white 6.14699331848552 82 5.8 0.28 0.27 2.6 0.054 30.0 156.0 0.9914 3.53 0.42 12.4 5 0 white 6.14699331848552 83 5.8 0.28 0.3 1.5 0.026 31.0 114.0 0.98952 3.32 0.6 12.5 7 1 white 6.38571428571428 84 5.8 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 6.79831932773109 85 5.8 0.28 0.35 2.3 0.053 36.0 114.0 0.9924 3.28 0.5 10.2 4 0 white 5.75169300225734 86 5.8 0.29 0.05 0.8 0.038 11.0 30.0 0.9924 3.36 0.35 9.2 5 0 white 5.75169300225734 87 5.8 0.29 0.21 2.6 0.025 12.0 120.0 0.9894 3.39 0.79 14.0 7 1 white 6.38571428571428 88 5.8 0.29 0.33 3.7 0.029 30.0 88.0 0.98994 3.25 0.42 12.3 6 0 white 6.79831932773109 89 5.8 0.3 0.09 6.3 0.042 36.0 138.0 0.99382 3.15 0.48 9.7 5 0 white 5.75169300225734 90 5.8 0.3 0.42 1.1 0.036 19.0 113.0 0.98871 3.1 0.46 12.6 7 1 white 6.38571428571428 91 5.8 0.32 0.28 4.3 0.032 46.0 115.0 0.98946 3.16 0.57 13.0 8 1 white 6.79831932773109 92 5.8 0.32 0.28 4.3 0.032 46.0 115.0 0.98946 3.16 0.57 13.0 8 1 white 6.79831932773109 93 5.8 0.32 0.31 2.7 0.049 25.0 153.0 0.99067 3.44 0.73 12.2 7 1 white 6.52 94 5.8 0.32 0.38 4.75 0.033 23.0 94.0 0.991 3.42 0.42 11.8 7 1 white 6.52 95 5.8 0.33 0.2 16.05 0.047 26.0 166.0 0.9976 3.09 0.46 8.9 5 0 white 5.49427005480817 96 5.8 0.34 0.21 6.6 0.04 50.0 167.0 0.9941 3.29 0.62 10.0 5 0 white 5.75169300225734 97 5.8 0.38 0.26 1.1 0.058 20.0 140.0 0.99271 3.27 0.43 9.7 6 0 white 5.75169300225734 98 5.8 0.58 0.0 1.5 0.02 33.0 96.0 0.98918 3.29 0.38 12.4 6 0 white 6.38571428571428 99 5.8 0.6 0.0 1.3 0.044 72.0 197.0 0.99202 3.56 0.43 10.9 5 0 white 5.75169300225734 100 5.8 0.61 0.11 1.8 0.066 18.0 28.0 0.99483 3.55 0.66 10.9 6 0 red 5.75169300225734 Rows: 1-100 | Columns: 15Note
Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the
vDataFrame
to thepredict()
function, but in this case, it’s essential that the column names of thevDataFrame
match the predictors and response name in the model.Plots¶
Tree models can be visualized by drawing their tree plots. For more examples, check out Machine Learning - Tree Plots.
model.plot_tree()
Note
The above example may not render properly in the doc because of the huge size of the tree. But it should render nicely in jupyter environment.
In order to plot graph using graphviz separately, you can extract the graphviz DOT file code as follows:
model.to_graphviz() Out[5]: 'digraph Tree {\ngraph [bgcolor="#FFFFFFDD"];\n0 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n0 -> 1 [label="<= 0.991991", color="#000000", fontcolor="#000000"]\n0 -> 2 [label="> 0.991991", color="#000000", fontcolor="#000000"]\n1 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n1 -> 3 [label="<= 0.990371", color="#000000", fontcolor="#000000"]\n1 -> 4 [label="> 0.990371", color="#000000", fontcolor="#000000"]\n2 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n2 -> 5 [label="<= 0.995232", color="#000000", fontcolor="#000000"]\n2 -> 6 [label="> 0.995232", color="#000000", fontcolor="#000000"]\n3 [label="\\"residual_sugar\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n3 -> 7 [label="<= 2.6375", color="#000000", fontcolor="#000000"]\n3 -> 8 [label="> 2.6375", color="#000000", fontcolor="#000000"]\n4 [label="\\"residual_sugar\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n4 -> 9 [label="<= 2.6375", color="#000000", fontcolor="#000000"]\n4 -> 10 [label="> 2.6375", color="#000000", fontcolor="#000000"]\n5 [label="\\"residual_sugar\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n5 -> 11 [label="<= 6.7125", color="#000000", fontcolor="#000000"]\n5 -> 12 [label="> 6.7125", color="#000000", fontcolor="#000000"]\n6 [label="\\"volatile_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n6 -> 13 [label="<= 0.220625", color="#000000", fontcolor="#000000"]\n6 -> 14 [label="> 0.220625", color="#000000", fontcolor="#000000"]\n7 [label="6.385714", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n8 [label="6.798319", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n9 [label="6.146993", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n10 [label="6.52", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n11 [label="5.751693", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n12 [label="6.144772", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n13 [label="6.0625", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n14 [label="5.49427", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n}'
This string can then be copied into a DOT file which can beparsed by graphviz.
Contour plot is another useful plot that can be produced for models with two predictors.
model.contour()
Important
Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.
Model Register¶
In order to register the model for tracking and versioning:
model.register("model_v1")
Please refer to Model Tracking and Versioning for more details on model tracking and versioning.
Model Exporting¶
To Memmodel
model.to_memmodel()
Note
MemModel
objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle ascikit-learn
model.The following methods for exporting the model use
MemModel
, and it is recommended to useMemModel
directly.To SQL
You can get the SQL code by:
model.to_sql() Out[6]: '(CASE WHEN "density" < 0.991991 THEN (CASE WHEN "density" < 0.990371 THEN (CASE WHEN "residual_sugar" < 2.6375 THEN 6.385714 ELSE 6.798319 END) ELSE (CASE WHEN "residual_sugar" < 2.6375 THEN 6.146993 ELSE 6.52 END) END) ELSE (CASE WHEN "density" < 0.995232 THEN (CASE WHEN "residual_sugar" < 6.7125 THEN 5.751693 ELSE 6.144772 END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN 6.0625 ELSE 5.49427 END) END) END)'
To Python
To obtain the prediction function in Python syntax, use the following code:
X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]] model.to_python()(X) Out[8]: array([6.385714])
Hint
The
to_python()
method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.- __init__(name: str = None, overwrite_model: bool = False, max_features: Literal['auto', 'max'] | int = 'auto', max_leaf_nodes: Annotated[int | float | Decimal, 'Python Numbers'] = 1000000000.0, max_depth: int = 100, min_samples_leaf: int = 1, min_info_gain: Annotated[int | float | Decimal, 'Python Numbers'] = 0.0, nbins: int = 32) None ¶
Must be overridden in the child class
Methods
__init__
([name, overwrite_model, ...])Must be overridden in the child class
contour
([nbins, chart])Draws the model's contour plot.
deploySQL
([X])Returns the SQL code needed to deploy the model.
does_model_exists
(name[, raise_error, ...])Checks whether the model is stored in the Vertica database.
drop
()Drops the model from the Vertica database.
export_models
(name, path[, kind])Exports machine learning models.
features_importance
([tree_id, show, chart])Computes the model's features importance.
fit
(input_relation, X, y[, test_relation, ...])Trains the model.
get_attributes
([attr_name])Returns the model attributes.
get_match_index
(x, col_list[, str_check])Returns the matching index.
Returns the parameters of the model.
get_plotting_lib
([class_name, chart, ...])Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.
get_score
([tree_id])Returns the feature importance metrics for the input tree.
get_tree
([tree_id])Returns a table with all the input tree information.
get_vertica_attributes
([attr_name])Returns the model Vertica attributes.
import_models
(path[, schema, kind])Imports machine learning models.
plot
([max_nb_points, chart])Draws the model.
plot_tree
([tree_id, pic_path])Draws the input tree.
predict
(vdf[, X, name, inplace])Predicts using the input relation.
register
(registered_name[, raise_error])Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.
regression_report
([metrics])Computes a regression report
report
([metrics])Computes a regression report
score
([metric])Computes the model score.
set_params
([parameters])Sets the parameters of the model.
Summarizes the model.
to_binary
(path)Exports the model to the Vertica Binary format.
to_graphviz
([tree_id, classes_color, ...])Returns the code for a Graphviz tree.
Converts the model to an InMemory object that can be used for different types of predictions.
to_pmml
(path)Exports the model to PMML.
to_python
([return_proba, ...])Returns the Python function needed for in-memory scoring without using built-in Vertica functions.
to_sql
([X, return_proba, ...])Returns the SQL code needed to deploy the model without using built-in Vertica functions.
to_tf
(path)Exports the model to the Frozen Graph format (TensorFlow).
Attributes