Loading...

verticapy.machine_learning.vertica.cluster.NearestCentroid.predict_proba

NearestCentroid.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame

Returns the model’s probabilities using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and “SELECT 1” are invalid.

X: SQLColumns, optional

List of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added vDataColumn. If empty, a name is generated.

pos_label: PythonScalar, optional

Class label. For binary classification, this can be either 1 or 0.

inplace: bool, optional

If set to True, the prediction is added to the vDataFrame.

Returns

vDataFrame

the input object.

Examples

For this example, we will use the Iris dataset.

import verticapy.datasets as vpd

data = vpd.load_iris()

train, test = data.train_test_split(test_size = 0.2)
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
13.34.55.67.8Iris-setosa
23.34.55.67.8Iris-setosa
33.34.55.67.8Iris-setosa
43.34.55.67.8Iris-setosa
53.34.55.67.8Iris-setosa
63.34.55.67.8Iris-setosa
73.34.55.67.8Iris-setosa
83.34.55.67.8Iris-setosa
93.34.55.67.8Iris-setosa
103.34.55.67.8Iris-setosa
113.34.55.67.8Iris-setosa
123.34.55.67.8Iris-setosa
133.34.55.67.8Iris-setosa
143.34.55.67.8Iris-setosa
153.34.55.67.8Iris-setosa
163.34.55.67.8Iris-setosa
173.34.55.67.8Iris-setosa
183.34.55.67.8Iris-setosa
193.34.55.67.8Iris-setosa
203.34.55.67.8Iris-setosa
213.34.55.67.8Iris-setosa
223.34.55.67.8Iris-setosa
233.34.55.67.8Iris-setosa
243.34.55.67.8Iris-setosa
253.34.55.67.8Iris-setosa
263.34.55.67.8Iris-setosa
274.33.01.10.1Iris-setosa
284.34.79.61.8Iris-virginica
294.34.79.61.8Iris-virginica
304.34.79.61.8Iris-virginica
314.34.79.61.8Iris-virginica
324.34.79.61.8Iris-virginica
334.34.79.61.8Iris-virginica
344.34.79.61.8Iris-virginica
354.34.79.61.8Iris-virginica
364.34.79.61.8Iris-virginica
374.34.79.61.8Iris-virginica
384.34.79.61.8Iris-virginica
394.34.79.61.8Iris-virginica
404.34.79.61.8Iris-virginica
414.34.79.61.8Iris-virginica
424.34.79.61.8Iris-virginica
434.34.79.61.8Iris-virginica
444.34.79.61.8Iris-virginica
454.34.79.61.8Iris-virginica
464.34.79.61.8Iris-virginica
474.34.79.61.8Iris-virginica
484.34.79.61.8Iris-virginica
494.34.79.61.8Iris-virginica
504.34.79.61.8Iris-virginica
514.34.79.61.8Iris-virginica
524.34.79.61.8Iris-virginica
534.34.79.61.8Iris-virginica
544.42.91.40.2Iris-setosa
554.43.01.30.2Iris-setosa
564.43.21.30.2Iris-setosa
574.52.31.30.3Iris-setosa
584.63.11.50.2Iris-setosa
594.63.21.40.2Iris-setosa
604.63.41.40.3Iris-setosa
614.63.61.00.2Iris-setosa
624.73.21.30.2Iris-setosa
634.73.21.60.2Iris-setosa
644.83.01.40.1Iris-setosa
654.83.01.40.3Iris-setosa
664.83.11.60.2Iris-setosa
674.83.41.60.2Iris-setosa
684.83.41.90.2Iris-setosa
694.92.43.31.0Iris-versicolor
704.92.54.51.7Iris-virginica
714.93.01.40.2Iris-setosa
724.93.11.50.1Iris-setosa
734.93.11.50.1Iris-setosa
744.93.11.50.1Iris-setosa
755.02.03.51.0Iris-versicolor
765.02.33.31.0Iris-versicolor
775.03.01.60.2Iris-setosa
785.03.21.20.2Iris-setosa
795.03.31.40.2Iris-setosa
805.03.41.50.2Iris-setosa
815.03.41.60.4Iris-setosa
825.03.51.30.3Iris-setosa
835.03.51.60.6Iris-setosa
845.03.61.40.2Iris-setosa
855.12.53.01.1Iris-versicolor
865.13.31.70.5Iris-setosa
875.13.41.50.2Iris-setosa
885.13.51.40.2Iris-setosa
895.13.51.40.3Iris-setosa
905.13.71.50.4Iris-setosa
915.13.81.50.3Iris-setosa
925.13.81.60.2Iris-setosa
935.13.81.90.4Iris-setosa
945.22.73.91.4Iris-versicolor
955.23.41.40.2Iris-setosa
965.23.51.50.2Iris-setosa
975.24.11.50.1Iris-setosa
985.33.71.50.2Iris-setosa
995.43.04.51.5Iris-versicolor
1005.43.41.50.4Iris-setosa
Rows: 1-100 | Columns: 5

Let’s import the model:

from verticapy.machine_learning.vertica import NearestCentroid

Then we can create the model:

model = NearestCentroid(p = 2)

We can now fit the model:

model.fit(
    train,
    [
        "SepalLengthCm",
        "SepalWidthCm",
        "PetalLengthCm",
        "PetalWidthCm",
    ],
    "Species",
    test,
)

We can then get the prediction:

model.predict_proba(test, name = "prediction"
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
123
prediction_irissetosa
Float(22)
123
prediction_irisversicolor
Float(22)
123
prediction_irisvirginica
Float(22)
13.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
23.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
33.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
43.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
53.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
63.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
73.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
83.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
94.34.79.61.8Iris-virginica0.2212608254140110.254538163920750.524201010665239
104.34.79.61.8Iris-virginica0.2212608254140110.254538163920750.524201010665239
114.34.79.61.8Iris-virginica0.2212608254140110.254538163920750.524201010665239
124.43.01.30.2Iris-setosa0.400686895282390.3838470209223040.215466083795306
134.63.41.40.3Iris-setosa0.4056149591736740.3824468024952750.211938238331051
144.93.11.50.1Iris-setosa0.382088525817260.4033178238340090.214593650348731
154.93.11.50.1Iris-setosa0.382088525817260.4033178238340090.214593650348731
165.03.21.20.2Iris-setosa0.3908472286569310.3942221473145790.21493062402849
175.03.31.40.2Iris-setosa0.388689465112520.3979396910569490.213370843830531
185.12.53.01.1Iris-versicolor0.3245609853386190.4993357844395140.176103230221867
195.13.81.50.3Iris-setosa0.3958373530997020.3912618557389430.212900791161355
205.13.81.60.2Iris-setosa0.3894048108665440.3960516776863420.214543511447113
215.13.81.90.4Iris-setosa0.3909672392038150.4011672663602770.207865494435908
225.24.11.50.1Iris-setosa0.3885434753866260.3911739274734740.2202825971399
235.43.71.50.2Iris-setosa0.3810837621012940.403695064884970.215221173013736
245.52.43.71.0Iris-versicolor0.207243093619950.6431261356416920.149630770738358
255.62.93.61.3Iris-versicolor0.2151626744431970.6486613243717180.136176001185085
265.74.41.50.4Iris-setosa0.3889016857684410.3909858423668430.220112471864716
275.82.73.91.2Iris-versicolor0.1295489944066080.7714152248756710.0990357807177208
285.82.75.11.9Iris-virginica0.1888911487785980.5743988224875490.236710028733853
295.84.01.20.2Iris-setosa0.3803169187906370.39764545739060.222037623818763
306.12.84.71.2Iris-versicolor0.1067873147632390.7729700269965260.120242658240236
316.13.04.91.8Iris-virginica0.1692137444371440.6310218515386080.199764404024248
326.32.55.01.9Iris-virginica0.1807232319736320.5959425432132440.223334224813124
336.42.85.62.1Iris-virginica0.1989839669153760.4549162484578380.346099784626786
346.42.85.62.2Iris-virginica0.2033954942892610.4471573715953910.349447134115347
356.73.14.71.5Iris-versicolor0.1716115864192330.628431043715550.199957369865217
366.73.35.72.1Iris-virginica0.2021641991145610.4120772281148740.385758572770565
376.93.15.12.3Iris-virginica0.2231144091416130.4824546898347690.294430901023617
387.23.26.01.8Iris-virginica0.1972892270220420.3920263223061970.410684450671761
397.93.86.42.0Iris-virginica0.2141638712363510.3462168320847790.43961929667887
404.34.79.61.8Iris-virginica0.2212608254140110.254538163920750.524201010665239
413.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
423.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
433.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
443.34.55.67.8Iris-setosa0.3842881017679720.2915725975525760.324139300679451
Rows: 1-44 | Columns: 8

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.