
verticapy.machine_learning.vertica.cluster.NearestCentroid.predict_proba¶
- NearestCentroid.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame ¶
Returns the model’s probabilities using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
and “SELECT 1” are invalid.- X: SQLColumns, optional
List of the columns used to deploy the models. If empty, the model predictors are used.
- name: str, optional
Name of the added vDataColumn. If empty, a name is generated.
- pos_label: PythonScalar, optional
Class label. For binary classification, this can be either 1 or 0.
- inplace: bool, optional
If set to True, the prediction is added to the vDataFrame.
Returns¶
- vDataFrame
the input object.
Examples¶
For this example, we will use the Iris dataset.
import verticapy.datasets as vpd data = vpd.load_iris() train, test = data.train_test_split(test_size = 0.2)
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies1 3.3 4.5 5.6 7.8 Iris-setosa 2 3.3 4.5 5.6 7.8 Iris-setosa 3 3.3 4.5 5.6 7.8 Iris-setosa 4 3.3 4.5 5.6 7.8 Iris-setosa 5 3.3 4.5 5.6 7.8 Iris-setosa 6 3.3 4.5 5.6 7.8 Iris-setosa 7 3.3 4.5 5.6 7.8 Iris-setosa 8 3.3 4.5 5.6 7.8 Iris-setosa 9 3.3 4.5 5.6 7.8 Iris-setosa 10 3.3 4.5 5.6 7.8 Iris-setosa 11 3.3 4.5 5.6 7.8 Iris-setosa 12 3.3 4.5 5.6 7.8 Iris-setosa 13 3.3 4.5 5.6 7.8 Iris-setosa 14 3.3 4.5 5.6 7.8 Iris-setosa 15 3.3 4.5 5.6 7.8 Iris-setosa 16 3.3 4.5 5.6 7.8 Iris-setosa 17 3.3 4.5 5.6 7.8 Iris-setosa 18 3.3 4.5 5.6 7.8 Iris-setosa 19 3.3 4.5 5.6 7.8 Iris-setosa 20 3.3 4.5 5.6 7.8 Iris-setosa 21 3.3 4.5 5.6 7.8 Iris-setosa 22 3.3 4.5 5.6 7.8 Iris-setosa 23 3.3 4.5 5.6 7.8 Iris-setosa 24 3.3 4.5 5.6 7.8 Iris-setosa 25 3.3 4.5 5.6 7.8 Iris-setosa 26 3.3 4.5 5.6 7.8 Iris-setosa 27 4.3 3.0 1.1 0.1 Iris-setosa 28 4.3 4.7 9.6 1.8 Iris-virginica 29 4.3 4.7 9.6 1.8 Iris-virginica 30 4.3 4.7 9.6 1.8 Iris-virginica 31 4.3 4.7 9.6 1.8 Iris-virginica 32 4.3 4.7 9.6 1.8 Iris-virginica 33 4.3 4.7 9.6 1.8 Iris-virginica 34 4.3 4.7 9.6 1.8 Iris-virginica 35 4.3 4.7 9.6 1.8 Iris-virginica 36 4.3 4.7 9.6 1.8 Iris-virginica 37 4.3 4.7 9.6 1.8 Iris-virginica 38 4.3 4.7 9.6 1.8 Iris-virginica 39 4.3 4.7 9.6 1.8 Iris-virginica 40 4.3 4.7 9.6 1.8 Iris-virginica 41 4.3 4.7 9.6 1.8 Iris-virginica 42 4.3 4.7 9.6 1.8 Iris-virginica 43 4.3 4.7 9.6 1.8 Iris-virginica 44 4.3 4.7 9.6 1.8 Iris-virginica 45 4.3 4.7 9.6 1.8 Iris-virginica 46 4.3 4.7 9.6 1.8 Iris-virginica 47 4.3 4.7 9.6 1.8 Iris-virginica 48 4.3 4.7 9.6 1.8 Iris-virginica 49 4.3 4.7 9.6 1.8 Iris-virginica 50 4.3 4.7 9.6 1.8 Iris-virginica 51 4.3 4.7 9.6 1.8 Iris-virginica 52 4.3 4.7 9.6 1.8 Iris-virginica 53 4.3 4.7 9.6 1.8 Iris-virginica 54 4.4 2.9 1.4 0.2 Iris-setosa 55 4.4 3.0 1.3 0.2 Iris-setosa 56 4.4 3.2 1.3 0.2 Iris-setosa 57 4.5 2.3 1.3 0.3 Iris-setosa 58 4.6 3.1 1.5 0.2 Iris-setosa 59 4.6 3.2 1.4 0.2 Iris-setosa 60 4.6 3.4 1.4 0.3 Iris-setosa 61 4.6 3.6 1.0 0.2 Iris-setosa 62 4.7 3.2 1.3 0.2 Iris-setosa 63 4.7 3.2 1.6 0.2 Iris-setosa 64 4.8 3.0 1.4 0.1 Iris-setosa 65 4.8 3.0 1.4 0.3 Iris-setosa 66 4.8 3.1 1.6 0.2 Iris-setosa 67 4.8 3.4 1.6 0.2 Iris-setosa 68 4.8 3.4 1.9 0.2 Iris-setosa 69 4.9 2.4 3.3 1.0 Iris-versicolor 70 4.9 2.5 4.5 1.7 Iris-virginica 71 4.9 3.0 1.4 0.2 Iris-setosa 72 4.9 3.1 1.5 0.1 Iris-setosa 73 4.9 3.1 1.5 0.1 Iris-setosa 74 4.9 3.1 1.5 0.1 Iris-setosa 75 5.0 2.0 3.5 1.0 Iris-versicolor 76 5.0 2.3 3.3 1.0 Iris-versicolor 77 5.0 3.0 1.6 0.2 Iris-setosa 78 5.0 3.2 1.2 0.2 Iris-setosa 79 5.0 3.3 1.4 0.2 Iris-setosa 80 5.0 3.4 1.5 0.2 Iris-setosa 81 5.0 3.4 1.6 0.4 Iris-setosa 82 5.0 3.5 1.3 0.3 Iris-setosa 83 5.0 3.5 1.6 0.6 Iris-setosa 84 5.0 3.6 1.4 0.2 Iris-setosa 85 5.1 2.5 3.0 1.1 Iris-versicolor 86 5.1 3.3 1.7 0.5 Iris-setosa 87 5.1 3.4 1.5 0.2 Iris-setosa 88 5.1 3.5 1.4 0.2 Iris-setosa 89 5.1 3.5 1.4 0.3 Iris-setosa 90 5.1 3.7 1.5 0.4 Iris-setosa 91 5.1 3.8 1.5 0.3 Iris-setosa 92 5.1 3.8 1.6 0.2 Iris-setosa 93 5.1 3.8 1.9 0.4 Iris-setosa 94 5.2 2.7 3.9 1.4 Iris-versicolor 95 5.2 3.4 1.4 0.2 Iris-setosa 96 5.2 3.5 1.5 0.2 Iris-setosa 97 5.2 4.1 1.5 0.1 Iris-setosa 98 5.3 3.7 1.5 0.2 Iris-setosa 99 5.4 3.0 4.5 1.5 Iris-versicolor 100 5.4 3.4 1.5 0.4 Iris-setosa Rows: 1-100 | Columns: 5Let’s import the model:
from verticapy.machine_learning.vertica import NearestCentroid
Then we can create the model:
model = NearestCentroid(p = 2)
We can now fit the model:
model.fit( train, [ "SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm", ], "Species", test, )
We can then get the prediction:
model.predict_proba(test, name = "prediction"
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies123prediction_irissetosa123prediction_irisversicolor123prediction_irisvirginica1 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 2 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 3 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 4 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 5 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 6 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 7 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 8 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 9 4.3 4.7 9.6 1.8 Iris-virginica 0.221260825414011 0.25453816392075 0.524201010665239 10 4.3 4.7 9.6 1.8 Iris-virginica 0.221260825414011 0.25453816392075 0.524201010665239 11 4.3 4.7 9.6 1.8 Iris-virginica 0.221260825414011 0.25453816392075 0.524201010665239 12 4.4 3.0 1.3 0.2 Iris-setosa 0.40068689528239 0.383847020922304 0.215466083795306 13 4.6 3.4 1.4 0.3 Iris-setosa 0.405614959173674 0.382446802495275 0.211938238331051 14 4.9 3.1 1.5 0.1 Iris-setosa 0.38208852581726 0.403317823834009 0.214593650348731 15 4.9 3.1 1.5 0.1 Iris-setosa 0.38208852581726 0.403317823834009 0.214593650348731 16 5.0 3.2 1.2 0.2 Iris-setosa 0.390847228656931 0.394222147314579 0.21493062402849 17 5.0 3.3 1.4 0.2 Iris-setosa 0.38868946511252 0.397939691056949 0.213370843830531 18 5.1 2.5 3.0 1.1 Iris-versicolor 0.324560985338619 0.499335784439514 0.176103230221867 19 5.1 3.8 1.5 0.3 Iris-setosa 0.395837353099702 0.391261855738943 0.212900791161355 20 5.1 3.8 1.6 0.2 Iris-setosa 0.389404810866544 0.396051677686342 0.214543511447113 21 5.1 3.8 1.9 0.4 Iris-setosa 0.390967239203815 0.401167266360277 0.207865494435908 22 5.2 4.1 1.5 0.1 Iris-setosa 0.388543475386626 0.391173927473474 0.2202825971399 23 5.4 3.7 1.5 0.2 Iris-setosa 0.381083762101294 0.40369506488497 0.215221173013736 24 5.5 2.4 3.7 1.0 Iris-versicolor 0.20724309361995 0.643126135641692 0.149630770738358 25 5.6 2.9 3.6 1.3 Iris-versicolor 0.215162674443197 0.648661324371718 0.136176001185085 26 5.7 4.4 1.5 0.4 Iris-setosa 0.388901685768441 0.390985842366843 0.220112471864716 27 5.8 2.7 3.9 1.2 Iris-versicolor 0.129548994406608 0.771415224875671 0.0990357807177208 28 5.8 2.7 5.1 1.9 Iris-virginica 0.188891148778598 0.574398822487549 0.236710028733853 29 5.8 4.0 1.2 0.2 Iris-setosa 0.380316918790637 0.3976454573906 0.222037623818763 30 6.1 2.8 4.7 1.2 Iris-versicolor 0.106787314763239 0.772970026996526 0.120242658240236 31 6.1 3.0 4.9 1.8 Iris-virginica 0.169213744437144 0.631021851538608 0.199764404024248 32 6.3 2.5 5.0 1.9 Iris-virginica 0.180723231973632 0.595942543213244 0.223334224813124 33 6.4 2.8 5.6 2.1 Iris-virginica 0.198983966915376 0.454916248457838 0.346099784626786 34 6.4 2.8 5.6 2.2 Iris-virginica 0.203395494289261 0.447157371595391 0.349447134115347 35 6.7 3.1 4.7 1.5 Iris-versicolor 0.171611586419233 0.62843104371555 0.199957369865217 36 6.7 3.3 5.7 2.1 Iris-virginica 0.202164199114561 0.412077228114874 0.385758572770565 37 6.9 3.1 5.1 2.3 Iris-virginica 0.223114409141613 0.482454689834769 0.294430901023617 38 7.2 3.2 6.0 1.8 Iris-virginica 0.197289227022042 0.392026322306197 0.410684450671761 39 7.9 3.8 6.4 2.0 Iris-virginica 0.214163871236351 0.346216832084779 0.43961929667887 40 4.3 4.7 9.6 1.8 Iris-virginica 0.221260825414011 0.25453816392075 0.524201010665239 41 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 42 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 43 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 44 3.3 4.5 5.6 7.8 Iris-setosa 0.384288101767972 0.291572597552576 0.324139300679451 Rows: 1-44 | Columns: 8Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.