
verticapy.machine_learning.vertica.ensemble.XGBClassifier.predict_proba¶
- XGBClassifier.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame ¶
Returns the model’s probabilities using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
and “SELECT 1” are invalid.- X: SQLColumns, optional
List of the columns used to deploy the models. If empty, the model predictors are used.
- name: str, optional
Name of the added vDataColumn. If empty, a name is generated.
- pos_label: PythonScalar, optional
Class label. For binary classification, this can be either 1 or 0.
- inplace: bool, optional
If set to True, the prediction is added to the vDataFrame.
Returns¶
- vDataFrame
the input object.
Examples¶
For this example, we will use the Iris dataset.
import verticapy.datasets as vpd data = vpd.load_iris() train, test = data.train_test_split(test_size = 0.2)
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies1 3.3 4.5 5.6 7.8 Iris-setosa 2 3.3 4.5 5.6 7.8 Iris-setosa 3 3.3 4.5 5.6 7.8 Iris-setosa 4 3.3 4.5 5.6 7.8 Iris-setosa 5 3.3 4.5 5.6 7.8 Iris-setosa 6 3.3 4.5 5.6 7.8 Iris-setosa 7 3.3 4.5 5.6 7.8 Iris-setosa 8 3.3 4.5 5.6 7.8 Iris-setosa 9 3.3 4.5 5.6 7.8 Iris-setosa 10 3.3 4.5 5.6 7.8 Iris-setosa 11 3.3 4.5 5.6 7.8 Iris-setosa 12 3.3 4.5 5.6 7.8 Iris-setosa 13 3.3 4.5 5.6 7.8 Iris-setosa 14 3.3 4.5 5.6 7.8 Iris-setosa 15 3.3 4.5 5.6 7.8 Iris-setosa 16 3.3 4.5 5.6 7.8 Iris-setosa 17 3.3 4.5 5.6 7.8 Iris-setosa 18 3.3 4.5 5.6 7.8 Iris-setosa 19 3.3 4.5 5.6 7.8 Iris-setosa 20 3.3 4.5 5.6 7.8 Iris-setosa 21 3.3 4.5 5.6 7.8 Iris-setosa 22 3.3 4.5 5.6 7.8 Iris-setosa 23 3.3 4.5 5.6 7.8 Iris-setosa 24 3.3 4.5 5.6 7.8 Iris-setosa 25 3.3 4.5 5.6 7.8 Iris-setosa 26 3.3 4.5 5.6 7.8 Iris-setosa 27 4.3 3.0 1.1 0.1 Iris-setosa 28 4.3 4.7 9.6 1.8 Iris-virginica 29 4.3 4.7 9.6 1.8 Iris-virginica 30 4.3 4.7 9.6 1.8 Iris-virginica 31 4.3 4.7 9.6 1.8 Iris-virginica 32 4.3 4.7 9.6 1.8 Iris-virginica 33 4.3 4.7 9.6 1.8 Iris-virginica 34 4.3 4.7 9.6 1.8 Iris-virginica 35 4.3 4.7 9.6 1.8 Iris-virginica 36 4.3 4.7 9.6 1.8 Iris-virginica 37 4.3 4.7 9.6 1.8 Iris-virginica 38 4.3 4.7 9.6 1.8 Iris-virginica 39 4.3 4.7 9.6 1.8 Iris-virginica 40 4.3 4.7 9.6 1.8 Iris-virginica 41 4.3 4.7 9.6 1.8 Iris-virginica 42 4.3 4.7 9.6 1.8 Iris-virginica 43 4.3 4.7 9.6 1.8 Iris-virginica 44 4.3 4.7 9.6 1.8 Iris-virginica 45 4.3 4.7 9.6 1.8 Iris-virginica 46 4.3 4.7 9.6 1.8 Iris-virginica 47 4.3 4.7 9.6 1.8 Iris-virginica 48 4.3 4.7 9.6 1.8 Iris-virginica 49 4.3 4.7 9.6 1.8 Iris-virginica 50 4.3 4.7 9.6 1.8 Iris-virginica 51 4.3 4.7 9.6 1.8 Iris-virginica 52 4.3 4.7 9.6 1.8 Iris-virginica 53 4.3 4.7 9.6 1.8 Iris-virginica 54 4.4 2.9 1.4 0.2 Iris-setosa 55 4.4 3.0 1.3 0.2 Iris-setosa 56 4.4 3.2 1.3 0.2 Iris-setosa 57 4.5 2.3 1.3 0.3 Iris-setosa 58 4.6 3.1 1.5 0.2 Iris-setosa 59 4.6 3.2 1.4 0.2 Iris-setosa 60 4.6 3.4 1.4 0.3 Iris-setosa 61 4.6 3.6 1.0 0.2 Iris-setosa 62 4.7 3.2 1.3 0.2 Iris-setosa 63 4.7 3.2 1.6 0.2 Iris-setosa 64 4.8 3.0 1.4 0.1 Iris-setosa 65 4.8 3.0 1.4 0.3 Iris-setosa 66 4.8 3.1 1.6 0.2 Iris-setosa 67 4.8 3.4 1.6 0.2 Iris-setosa 68 4.8 3.4 1.9 0.2 Iris-setosa 69 4.9 2.4 3.3 1.0 Iris-versicolor 70 4.9 2.5 4.5 1.7 Iris-virginica 71 4.9 3.0 1.4 0.2 Iris-setosa 72 4.9 3.1 1.5 0.1 Iris-setosa 73 4.9 3.1 1.5 0.1 Iris-setosa 74 4.9 3.1 1.5 0.1 Iris-setosa 75 5.0 2.0 3.5 1.0 Iris-versicolor 76 5.0 2.3 3.3 1.0 Iris-versicolor 77 5.0 3.0 1.6 0.2 Iris-setosa 78 5.0 3.2 1.2 0.2 Iris-setosa 79 5.0 3.3 1.4 0.2 Iris-setosa 80 5.0 3.4 1.5 0.2 Iris-setosa 81 5.0 3.4 1.6 0.4 Iris-setosa 82 5.0 3.5 1.3 0.3 Iris-setosa 83 5.0 3.5 1.6 0.6 Iris-setosa 84 5.0 3.6 1.4 0.2 Iris-setosa 85 5.1 2.5 3.0 1.1 Iris-versicolor 86 5.1 3.3 1.7 0.5 Iris-setosa 87 5.1 3.4 1.5 0.2 Iris-setosa 88 5.1 3.5 1.4 0.2 Iris-setosa 89 5.1 3.5 1.4 0.3 Iris-setosa 90 5.1 3.7 1.5 0.4 Iris-setosa 91 5.1 3.8 1.5 0.3 Iris-setosa 92 5.1 3.8 1.6 0.2 Iris-setosa 93 5.1 3.8 1.9 0.4 Iris-setosa 94 5.2 2.7 3.9 1.4 Iris-versicolor 95 5.2 3.4 1.4 0.2 Iris-setosa 96 5.2 3.5 1.5 0.2 Iris-setosa 97 5.2 4.1 1.5 0.1 Iris-setosa 98 5.3 3.7 1.5 0.2 Iris-setosa 99 5.4 3.0 4.5 1.5 Iris-versicolor 100 5.4 3.4 1.5 0.4 Iris-setosa Rows: 1-100 | Columns: 5Let’s import the model:
from verticapy.machine_learning.vertica import NearestCentroid
Then we can create the model:
model = NearestCentroid(p = 2)
We can now fit the model:
model.fit( train, [ "SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm", ], "Species", test, )
We can then get the prediction:
model.predict_proba(test, name = "prediction"
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies123prediction_irissetosa123prediction_irisversicolor123prediction_irisvirginica1 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 2 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 3 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 4 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 5 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 6 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 7 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 8 3.3 4.5 5.6 7.8 Iris-setosa 0.38864692275889 0.288923285635048 0.322429791606062 9 4.3 4.7 9.6 1.8 Iris-virginica 0.223728569670304 0.253374401502291 0.522897028827405 10 4.3 4.7 9.6 1.8 Iris-virginica 0.223728569670304 0.253374401502291 0.522897028827405 11 4.3 4.7 9.6 1.8 Iris-virginica 0.223728569670304 0.253374401502291 0.522897028827405 12 4.3 4.7 9.6 1.8 Iris-virginica 0.223728569670304 0.253374401502291 0.522897028827405 13 4.3 4.7 9.6 1.8 Iris-virginica 0.223728569670304 0.253374401502291 0.522897028827405 14 4.3 4.7 9.6 1.8 Iris-virginica 0.223728569670304 0.253374401502291 0.522897028827405 15 4.6 3.4 1.4 0.3 Iris-setosa 0.395716739562585 0.390930215747962 0.213353044689453 16 4.7 3.2 1.6 0.2 Iris-setosa 0.380978471398448 0.405662345287103 0.21335918331445 17 4.9 2.4 3.3 1.0 Iris-versicolor 0.293402885511769 0.525853087440262 0.180744027047969 18 4.9 3.1 1.5 0.1 Iris-setosa 0.372150203589877 0.412279208908002 0.21557058750212 19 5.0 3.0 1.6 0.2 Iris-setosa 0.368252054290535 0.419474672878694 0.212273272830771 20 5.0 3.2 1.2 0.2 Iris-setosa 0.381373654652462 0.402650453840864 0.215975891506674 21 5.0 3.4 1.6 0.4 Iris-setosa 0.384326468343881 0.407179543960736 0.208493987695383 22 5.1 3.8 1.5 0.3 Iris-setosa 0.386697550312038 0.399379857722991 0.213922591964971 23 5.2 2.7 3.9 1.4 Iris-versicolor 0.217308372757308 0.63519566558057 0.147495961662122 24 5.4 3.0 4.5 1.5 Iris-versicolor 0.176036978195889 0.665646961452019 0.158316060352092 25 5.4 3.4 1.7 0.2 Iris-setosa 0.360695080305827 0.42695450085917 0.212350418835003 26 5.6 2.5 3.9 1.1 Iris-versicolor 0.148664298278447 0.733857733657943 0.117477968063611 27 5.6 2.8 4.9 2.0 Iris-virginica 0.210915117805586 0.559721160142897 0.229363722051517 28 5.8 2.7 5.1 1.9 Iris-virginica 0.194973882973042 0.554789594005002 0.250236523021956 29 5.9 3.0 4.2 1.5 Iris-versicolor 0.0967305890937725 0.82149904312595 0.0817703677802771 30 5.9 3.2 4.8 1.8 Iris-versicolor 0.189505265756689 0.600954016406516 0.209540717836794 31 6.0 2.7 5.1 1.6 Iris-versicolor 0.169661643583201 0.600377091681597 0.229961264735202 32 6.2 3.4 5.4 2.3 Iris-virginica 0.225133165890698 0.420162694920728 0.354704139188574 33 6.3 2.3 4.4 1.3 Iris-versicolor 0.13179578587771 0.732959116204922 0.135245097917368 34 6.3 3.4 5.6 2.4 Iris-virginica 0.220718310983993 0.386504241597897 0.39277744741811 35 6.4 2.8 5.6 2.2 Iris-virginica 0.206512392361641 0.43323478130485 0.360252826333509 36 6.7 3.3 5.7 2.1 Iris-virginica 0.204938251127183 0.400208443992383 0.394853304880435 37 6.7 3.3 5.7 2.5 Iris-virginica 0.220644614762744 0.380949795680825 0.398405589556431 38 6.8 3.2 5.9 2.3 Iris-virginica 0.205849293884283 0.370825915879584 0.423324790236133 39 6.9 3.1 4.9 1.5 Iris-versicolor 0.190293464479833 0.560268569561951 0.249437965958216 40 6.9 3.2 5.7 2.3 Iris-virginica 0.213981479128166 0.39702802666814 0.388990494203694 41 7.0 3.2 4.7 1.4 Iris-versicolor 0.194552113300219 0.568679056440189 0.236768830259592 42 7.2 3.2 6.0 1.8 Iris-virginica 0.199146393120126 0.383033974441057 0.417819632438817 43 7.6 3.0 6.6 2.1 Iris-virginica 0.203203831897157 0.337630569450462 0.459165598652381 44 7.9 3.8 6.4 2.0 Iris-virginica 0.216390596367537 0.341348109359985 0.442261294272478 Rows: 1-44 | Columns: 8Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.