Loading...

verticapy.machine_learning.vertica.ensemble.XGBClassifier.predict_proba

XGBClassifier.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame

Returns the model’s probabilities using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and “SELECT 1” are invalid.

X: SQLColumns, optional

List of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added vDataColumn. If empty, a name is generated.

pos_label: PythonScalar, optional

Class label. For binary classification, this can be either 1 or 0.

inplace: bool, optional

If set to True, the prediction is added to the vDataFrame.

Returns

vDataFrame

the input object.

Examples

For this example, we will use the Iris dataset.

import verticapy.datasets as vpd

data = vpd.load_iris()

train, test = data.train_test_split(test_size = 0.2)
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
13.34.55.67.8Iris-setosa
23.34.55.67.8Iris-setosa
33.34.55.67.8Iris-setosa
43.34.55.67.8Iris-setosa
53.34.55.67.8Iris-setosa
63.34.55.67.8Iris-setosa
73.34.55.67.8Iris-setosa
83.34.55.67.8Iris-setosa
93.34.55.67.8Iris-setosa
103.34.55.67.8Iris-setosa
113.34.55.67.8Iris-setosa
123.34.55.67.8Iris-setosa
133.34.55.67.8Iris-setosa
143.34.55.67.8Iris-setosa
153.34.55.67.8Iris-setosa
163.34.55.67.8Iris-setosa
173.34.55.67.8Iris-setosa
183.34.55.67.8Iris-setosa
193.34.55.67.8Iris-setosa
203.34.55.67.8Iris-setosa
213.34.55.67.8Iris-setosa
223.34.55.67.8Iris-setosa
233.34.55.67.8Iris-setosa
243.34.55.67.8Iris-setosa
253.34.55.67.8Iris-setosa
263.34.55.67.8Iris-setosa
274.33.01.10.1Iris-setosa
284.34.79.61.8Iris-virginica
294.34.79.61.8Iris-virginica
304.34.79.61.8Iris-virginica
314.34.79.61.8Iris-virginica
324.34.79.61.8Iris-virginica
334.34.79.61.8Iris-virginica
344.34.79.61.8Iris-virginica
354.34.79.61.8Iris-virginica
364.34.79.61.8Iris-virginica
374.34.79.61.8Iris-virginica
384.34.79.61.8Iris-virginica
394.34.79.61.8Iris-virginica
404.34.79.61.8Iris-virginica
414.34.79.61.8Iris-virginica
424.34.79.61.8Iris-virginica
434.34.79.61.8Iris-virginica
444.34.79.61.8Iris-virginica
454.34.79.61.8Iris-virginica
464.34.79.61.8Iris-virginica
474.34.79.61.8Iris-virginica
484.34.79.61.8Iris-virginica
494.34.79.61.8Iris-virginica
504.34.79.61.8Iris-virginica
514.34.79.61.8Iris-virginica
524.34.79.61.8Iris-virginica
534.34.79.61.8Iris-virginica
544.42.91.40.2Iris-setosa
554.43.01.30.2Iris-setosa
564.43.21.30.2Iris-setosa
574.52.31.30.3Iris-setosa
584.63.11.50.2Iris-setosa
594.63.21.40.2Iris-setosa
604.63.41.40.3Iris-setosa
614.63.61.00.2Iris-setosa
624.73.21.30.2Iris-setosa
634.73.21.60.2Iris-setosa
644.83.01.40.1Iris-setosa
654.83.01.40.3Iris-setosa
664.83.11.60.2Iris-setosa
674.83.41.60.2Iris-setosa
684.83.41.90.2Iris-setosa
694.92.43.31.0Iris-versicolor
704.92.54.51.7Iris-virginica
714.93.01.40.2Iris-setosa
724.93.11.50.1Iris-setosa
734.93.11.50.1Iris-setosa
744.93.11.50.1Iris-setosa
755.02.03.51.0Iris-versicolor
765.02.33.31.0Iris-versicolor
775.03.01.60.2Iris-setosa
785.03.21.20.2Iris-setosa
795.03.31.40.2Iris-setosa
805.03.41.50.2Iris-setosa
815.03.41.60.4Iris-setosa
825.03.51.30.3Iris-setosa
835.03.51.60.6Iris-setosa
845.03.61.40.2Iris-setosa
855.12.53.01.1Iris-versicolor
865.13.31.70.5Iris-setosa
875.13.41.50.2Iris-setosa
885.13.51.40.2Iris-setosa
895.13.51.40.3Iris-setosa
905.13.71.50.4Iris-setosa
915.13.81.50.3Iris-setosa
925.13.81.60.2Iris-setosa
935.13.81.90.4Iris-setosa
945.22.73.91.4Iris-versicolor
955.23.41.40.2Iris-setosa
965.23.51.50.2Iris-setosa
975.24.11.50.1Iris-setosa
985.33.71.50.2Iris-setosa
995.43.04.51.5Iris-versicolor
1005.43.41.50.4Iris-setosa
Rows: 1-100 | Columns: 5

Let’s import the model:

from verticapy.machine_learning.vertica import NearestCentroid

Then we can create the model:

model = NearestCentroid(p = 2)

We can now fit the model:

model.fit(
    train,
    [
        "SepalLengthCm",
        "SepalWidthCm",
        "PetalLengthCm",
        "PetalWidthCm",
    ],
    "Species",
    test,
)

We can then get the prediction:

model.predict_proba(test, name = "prediction"
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
123
prediction_irissetosa
Float(22)
123
prediction_irisversicolor
Float(22)
123
prediction_irisvirginica
Float(22)
13.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
23.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
33.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
43.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
53.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
63.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
73.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
83.34.55.67.8Iris-setosa0.388646922758890.2889232856350480.322429791606062
94.34.79.61.8Iris-virginica0.2237285696703040.2533744015022910.522897028827405
104.34.79.61.8Iris-virginica0.2237285696703040.2533744015022910.522897028827405
114.34.79.61.8Iris-virginica0.2237285696703040.2533744015022910.522897028827405
124.34.79.61.8Iris-virginica0.2237285696703040.2533744015022910.522897028827405
134.34.79.61.8Iris-virginica0.2237285696703040.2533744015022910.522897028827405
144.34.79.61.8Iris-virginica0.2237285696703040.2533744015022910.522897028827405
154.63.41.40.3Iris-setosa0.3957167395625850.3909302157479620.213353044689453
164.73.21.60.2Iris-setosa0.3809784713984480.4056623452871030.21335918331445
174.92.43.31.0Iris-versicolor0.2934028855117690.5258530874402620.180744027047969
184.93.11.50.1Iris-setosa0.3721502035898770.4122792089080020.21557058750212
195.03.01.60.2Iris-setosa0.3682520542905350.4194746728786940.212273272830771
205.03.21.20.2Iris-setosa0.3813736546524620.4026504538408640.215975891506674
215.03.41.60.4Iris-setosa0.3843264683438810.4071795439607360.208493987695383
225.13.81.50.3Iris-setosa0.3866975503120380.3993798577229910.213922591964971
235.22.73.91.4Iris-versicolor0.2173083727573080.635195665580570.147495961662122
245.43.04.51.5Iris-versicolor0.1760369781958890.6656469614520190.158316060352092
255.43.41.70.2Iris-setosa0.3606950803058270.426954500859170.212350418835003
265.62.53.91.1Iris-versicolor0.1486642982784470.7338577336579430.117477968063611
275.62.84.92.0Iris-virginica0.2109151178055860.5597211601428970.229363722051517
285.82.75.11.9Iris-virginica0.1949738829730420.5547895940050020.250236523021956
295.93.04.21.5Iris-versicolor0.09673058909377250.821499043125950.0817703677802771
305.93.24.81.8Iris-versicolor0.1895052657566890.6009540164065160.209540717836794
316.02.75.11.6Iris-versicolor0.1696616435832010.6003770916815970.229961264735202
326.23.45.42.3Iris-virginica0.2251331658906980.4201626949207280.354704139188574
336.32.34.41.3Iris-versicolor0.131795785877710.7329591162049220.135245097917368
346.33.45.62.4Iris-virginica0.2207183109839930.3865042415978970.39277744741811
356.42.85.62.2Iris-virginica0.2065123923616410.433234781304850.360252826333509
366.73.35.72.1Iris-virginica0.2049382511271830.4002084439923830.394853304880435
376.73.35.72.5Iris-virginica0.2206446147627440.3809497956808250.398405589556431
386.83.25.92.3Iris-virginica0.2058492938842830.3708259158795840.423324790236133
396.93.14.91.5Iris-versicolor0.1902934644798330.5602685695619510.249437965958216
406.93.25.72.3Iris-virginica0.2139814791281660.397028026668140.388990494203694
417.03.24.71.4Iris-versicolor0.1945521133002190.5686790564401890.236768830259592
427.23.26.01.8Iris-virginica0.1991463931201260.3830339744410570.417819632438817
437.63.06.62.1Iris-virginica0.2032038318971570.3376305694504620.459165598652381
447.93.86.42.0Iris-virginica0.2163905963675370.3413481093599850.442261294272478
Rows: 1-44 | Columns: 8

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.