Loading...

verticapy.machine_learning.vertica.ensemble.XGBClassifier#

class verticapy.machine_learning.vertica.ensemble.XGBClassifier(name: str = None, overwrite_model: bool = False, max_ntree: int = 10, max_depth: int = 5, nbins: int = 32, split_proposal_method: Literal['local', 'global'] = 'global', tol: float = 0.001, learning_rate: float = 0.1, min_split_loss: float = 0.0, weight_reg: float = 0.0, sample: float = 1.0, col_sample_by_tree: float = 1.0, col_sample_by_node: float = 1.0)#

Creates an XGBClassifier object using the Vertica XGB_CLASSIFIER algorithm.

Parameters#

name: str, optional

Name of the model. The model is stored in the DB.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

max_ntree: int, optional

Maximum number of trees that can be created.

max_depth: int, optional

aximum depth of each tree, an integer between 1 and 20, inclusive.

nbins: int, optional

Number of bins used to find splits in each column, where more splits leads to a longer runtime but more fine-grained, possibly better splits. Must be an integer between 2 and 1000, inclusive.

split_proposal_method: str, optional

Approximate splitting strategy, either global or local (not yet supported).

tol: float, optional

Approximation error of quantile summary structures used in the approximate split finding method.

learning_rate: float, optional

Weight applied to each tree’s prediction. This reduces each tree’s impact, allowing for later trees to contribute and keeping earlier trees from dominating.

min_split_loss: float, optional

Each split must improve the model’s objective function value by at least this much in order to avoid pruning. A value of 0 is the same as turning off this parameter (trees are still pruned based on positive / negative objective function values).

weight_reg: float, optional

Regularization term that is applied to the weights of the leaves in the regression tree. A higher value leads to more sparse/smooth weights, which often helps to prevent overfitting.

sample: float, optional

Fraction of rows used per iteration in training.

col_sample_by_tree: float, optional

float in the range (0,1] that specifies the fraction of columns (features), chosen at random, to use when building each tree.

col_sample_by_node: float, optional

float in the range (0,1] that specifies the fraction of columns (features), chosen at random, to use when evaluating each split.

Attributes#

Many attributes are created during the fitting phase.

trees_: list of BinaryTreeClassifier

Tree models are instances of ` BinaryTreeClassifier, each possessing various attributes. For more detailed information, refer to the documentation for BinaryTreeClassifier.

features_importance_: numpy.array

The importance of features. It is calculated using the average gain of each tree. To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

features_importance_trees_: dict of numpy.array

Each element of the array represents the feature importance of tree i. The importance of features is calculated using the average gain of each tree. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

logodds_: numpy.array

The log-odds. It quantifies the logarithm of the odds ratio, providing a measure of the likelihood of an event occurring.

eta_: float

The learning rate, is a crucial hyperparameter in machine learning algorithms. It determines the step size at each iteration during the model training process. A well-chosen learning rate is essential for achieving optimal convergence and preventing overshooting or slow convergence in the training phase. Adjusting the learning rate is often necessary to strike a balance between model accuracy and computational efficiency.

n_estimators_: int

The number of model estimators.

classes_: numpy.array

The classes labels.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Important

Many tree-based models inherit from the XGB base class, and it’s recommended to use it directly for access to a wider range of options.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Balancing the Dataset#

In VerticaPy, balancing a dataset to address class imbalances is made straightforward through the balance() function within the preprocessing module. This function enables users to rectify skewed class distributions efficiently. By specifying the target variable and setting parameters like the method for balancing, users can effortlessly achieve a more equitable representation of classes in their dataset. Whether opting for over-sampling, under-sampling, or a combination of both, VerticaPy’s balance() function streamlines the process, empowering users to enhance the performance and fairness of their machine learning models trained on imbalanced data.

To balance the dataset, use the following syntax.

from verticapy.machine_learning.vertica.preprocessing import balance

balanced_train = balance(
    name = "my_schema.train_balanced",
    input_relation = train,
    y = "good",
    method = "hybrid",
)

Note

With this code, a table named train_balanced is created in the my_schema schema. It can then be used to train the model. In the rest of the example, we will work with the full dataset.

Hint

Balancing the dataset is a crucial step in improving the accuracy of machine learning models, particularly when faced with imbalanced class distributions. By addressing disparities in the number of instances across different classes, the model becomes more adept at learning patterns from all classes rather than being biased towards the majority class. This, in turn, enhances the model’s ability to make accurate predictions for under-represented classes. The balanced dataset ensures that the model is not dominated by the majority class and, as a result, leads to more robust and unbiased model performance. Therefore, by employing techniques such as over-sampling, under-sampling, or a combination of both during dataset preparation, practitioners can significantly contribute to achieving higher accuracy and better generalization of their machine learning models.

Model Initialization#

First we import the XGBClassifier model:

from verticapy.machine_learning.vertica import XGBClassifier

Then we can create the model:

model = XGBClassifier(
    max_ntree = 3,
    max_depth = 3,
    nbins = 6,
    split_proposal_method = 'global',
    tol = 0.001,
    learning_rate = 0.1,
    min_split_loss = 0,
    weight_reg = 0,
    sample = 0.7,
    col_sample_by_tree = 1,
    col_sample_by_node = 1,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "good",
    test,
)

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Features Importance#

We can conveniently get the features importance:

result = model.features_importance()

Note

In models such as XGBoost, feature importance is calculated using the average gain of each tree. To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them.

Metrics#

We can get the entire report using:

model.report()
value
auc0.6519267539344019
prc_auc0.4889444851133055
accuracy0.8009188361408882
log_loss0.26070667021211
precision0.0
recall0.0
f1_score0.0
mcc0.0
informedness0.0
markedness-0.1990811638591118
csi0.0
Rows: 1-11 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["auc", "accuracy"]).

For classification models, we can easily modify the cutoff to observe the effect on different metrics:

model.report(cutoff = 0.2)
value
auc0.6519267539344019
prc_auc0.4889444851133055
accuracy0.1990811638591118
log_loss0.26070667021211
precision0.1990811638591118
recall1.0
f1_score0.3320561941251597
mcc0.0
informedness0.0
markedness-0.8009188361408882
csi0.1990811638591118
Rows: 1-11 | Columns: 2

You can also use the score() function to compute any classification metric. The default metric is the accuracy:

model.score()
Out[3]: 0.8009188361408882

Prediction#

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
Abc
prediction
Varchar(1)
13.90.2250.44.20.0329.0118.00.9893.570.3612.881white0
24.40.460.12.80.02431.0111.00.988163.480.3413.160white0
34.50.190.210.950.03389.0159.00.993323.340.428.050white0
44.60.4450.01.40.05311.0178.00.994263.790.5510.250white0
54.70.60.172.30.05817.0106.00.99323.850.612.960red0
64.80.130.321.20.04240.098.00.98983.420.6411.871white0
74.80.2250.381.20.07447.0130.00.991323.310.410.360white0
84.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white0
94.90.420.02.10.04816.042.00.991543.710.7414.071red0
105.00.330.161.50.04910.097.00.99173.480.4410.760white0
115.00.350.257.80.03124.0116.00.992413.390.411.360white0
125.00.380.011.60.04826.060.00.990843.70.7514.060red0
135.00.440.0418.60.03938.0128.00.99853.370.5710.260white0
145.00.610.121.30.00965.0100.00.98743.260.3713.550white0
155.00.740.01.20.04116.046.00.992584.010.5912.560red0
165.10.140.250.70.03915.089.00.99193.220.439.260white0
175.10.260.331.10.02746.0113.00.989463.350.4311.471white0
185.10.30.32.30.04840.0150.00.989443.290.4612.260white0
195.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white0
205.10.310.30.90.03728.0152.00.9923.540.5610.160white0
215.10.330.221.60.02718.089.00.98933.510.3812.571white0
225.10.350.266.80.03436.0120.00.991883.380.411.560white0
235.10.420.011.50.01725.0102.00.98943.380.3612.371white0
245.10.470.021.30.03418.044.00.99213.90.6212.860red0
255.10.520.062.70.05230.079.00.99323.320.439.350white0
265.20.170.270.70.0311.068.00.992183.30.419.850white0
275.20.1850.221.00.0347.0123.00.992183.550.4410.1560white0
285.20.210.311.70.04817.061.00.989533.240.3712.071white0
295.20.240.453.80.02721.0128.00.9923.550.4911.281white0
305.30.2750.247.40.03828.0114.00.993133.380.5111.060white0
315.30.30.164.20.02937.0100.00.99053.30.3611.881white0
325.30.30.21.10.07748.0166.00.99443.30.548.740white0
335.30.30.31.20.02925.093.00.987423.310.413.671white0
345.30.310.3810.50.03153.0140.00.993213.340.4611.760white0
355.30.40.253.90.03145.0130.00.990723.310.5811.7571white0
365.30.570.011.70.0545.027.00.99343.570.8412.571red0
375.40.180.244.80.04130.0113.00.994453.420.49.460white0
385.40.220.291.20.04569.0152.00.991783.760.6311.071white0
395.40.450.276.40.03320.0102.00.989443.220.2713.481white0
405.40.460.152.10.02629.0130.00.989533.390.7713.481white0
415.40.530.162.70.03634.0128.00.988563.20.5313.281white0
425.40.530.162.70.03634.0128.00.988563.20.5313.281white0
435.40.590.077.00.04536.0147.00.99443.340.579.760white0
445.40.5950.12.80.04226.080.00.99323.360.389.350white0
455.40.8350.081.20.04613.093.00.99243.570.8513.071red0
465.50.120.331.00.03823.0131.00.991643.250.459.850white0
475.50.140.274.60.02922.0104.00.99493.340.449.050white0
485.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white0
495.50.180.225.50.03710.086.00.991563.460.4412.250white0
505.50.240.451.70.04622.0113.00.992243.220.4810.050white0
515.50.3150.382.60.03310.069.00.99093.120.5910.860white0
525.50.320.454.90.02825.0191.00.99223.510.4911.571white0
535.50.340.262.20.02131.0119.00.989193.550.4913.081white0
545.50.3750.381.70.03617.098.00.991423.290.3910.560white0
555.50.420.091.60.01918.068.00.99063.330.5111.471white0
565.50.490.031.80.04428.087.00.99083.50.8214.081red0
575.60.120.264.30.03818.097.00.994773.360.469.250white0
585.60.180.581.250.03429.0129.00.989843.510.612.071white0
595.60.1850.197.10.04836.0110.00.994383.260.419.560white0
605.60.1850.491.10.0328.0117.00.99183.550.4510.360white0
615.60.190.270.90.0452.0103.00.990263.50.3911.250white0
625.60.190.474.50.0319.0112.00.99223.560.4511.260white0
635.60.210.244.40.02737.0150.00.9913.30.3111.571white0
645.60.210.41.30.04181.0147.00.99013.220.9511.681white0
655.60.230.258.00.04331.0101.00.994293.190.4210.460white0
665.60.2350.291.20.04733.0127.00.9913.340.511.071white0
675.60.240.342.00.04114.073.00.989813.040.4511.671white0
685.60.260.2710.60.0327.0119.00.99473.40.3410.771white0
695.60.290.050.80.03811.030.00.99243.360.359.250white0
705.60.30.16.40.04334.0142.00.993823.140.489.850white0
715.60.310.371.40.07412.096.00.99543.320.589.250red0
725.60.320.337.40.03725.095.00.992683.250.4911.160white0
735.60.350.371.00.0386.072.00.99023.370.3411.450white0
745.60.490.134.50.03917.0116.00.99073.420.913.771white0
755.60.660.02.20.0873.011.00.993783.710.6312.871red0
765.60.6950.066.80.0429.084.00.994323.440.4410.250white0
775.60.9150.02.10.04117.078.00.993463.680.7311.450red0
785.70.120.265.50.03421.099.00.993243.090.579.960white0
795.70.140.35.40.04526.0105.00.994693.320.459.350white0
805.70.160.266.30.04328.0113.00.99363.060.589.960white0
815.70.180.224.20.04225.0111.00.9943.350.399.450white0
825.70.180.262.20.02321.095.00.98933.070.5412.360white0
835.70.180.361.20.0469.071.00.991993.70.6810.971white0
845.70.210.242.30.04760.0189.00.9953.650.7210.160white0
855.70.220.216.00.04441.0113.00.998623.220.468.960white0
865.70.220.281.30.02726.0101.00.989483.350.3812.571white0
875.70.240.476.30.06935.0182.00.993913.110.469.7550white0
885.70.250.2612.50.04952.5120.00.996913.080.459.460white0
895.70.250.3212.20.04143.0127.00.995243.230.5310.471white0
905.70.260.274.10.20173.5189.50.99423.270.389.460white0
915.70.2650.286.90.03646.0150.00.992993.360.4410.871white0
925.70.270.169.00.05332.0111.00.994743.360.3710.460white0
935.70.290.167.90.04448.0197.00.995123.210.369.450white0
945.70.360.344.20.02621.077.00.99073.410.4511.960white0
955.70.370.31.10.02924.088.00.988833.180.3911.760white0
965.80.130.2212.70.05824.0183.00.99563.320.4211.760white0
975.80.150.491.10.04821.098.00.99293.190.489.250white0
985.80.180.371.10.03631.096.00.989423.160.4812.060white0
995.80.190.241.30.04438.0128.00.993623.770.610.650white0
1005.80.20.161.40.04244.099.00.989123.230.3712.260white0
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Probabilities#

It is also easy to get the model’s probabilities:

model.predict_proba(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
Abc
prediction
Varchar(1)
Abc
prediction_0
Varchar(128)
Abc
prediction_1
Varchar(128)
13.90.2250.44.20.0329.0118.00.9893.570.3612.881white00.5528910.447109
24.40.460.12.80.02431.0111.00.988163.480.3413.160white00.5874660.412534
34.50.190.210.950.03389.0159.00.993323.340.428.050white00.5874660.412534
44.60.4450.01.40.05311.0178.00.994263.790.5510.250white00.5874660.412534
54.70.60.172.30.05817.0106.00.99323.850.612.960red00.5874660.412534
64.80.130.321.20.04240.098.00.98983.420.6411.871white00.5528910.447109
74.80.2250.381.20.07447.0130.00.991323.310.410.360white00.5528910.447109
84.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white00.5874660.412534
94.90.420.02.10.04816.042.00.991543.710.7414.071red00.5874660.412534
105.00.330.161.50.04910.097.00.99173.480.4410.760white00.5874660.412534
115.00.350.257.80.03124.0116.00.992413.390.411.360white00.5874660.412534
125.00.380.011.60.04826.060.00.990843.70.7514.060red00.5874660.412534
135.00.440.0418.60.03938.0128.00.99853.370.5710.260white00.6247680.375232
145.00.610.121.30.00965.0100.00.98743.260.3713.550white00.5874660.412534
155.00.740.01.20.04116.046.00.992584.010.5912.560red00.5874660.412534
165.10.140.250.70.03915.089.00.99193.220.439.260white00.5874660.412534
175.10.260.331.10.02746.0113.00.989463.350.4311.471white00.5528910.447109
185.10.30.32.30.04840.0150.00.989443.290.4612.260white00.5528910.447109
195.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white00.5874660.412534
205.10.310.30.90.03728.0152.00.9923.540.5610.160white00.5528910.447109
215.10.330.221.60.02718.089.00.98933.510.3812.571white00.5874660.412534
225.10.350.266.80.03436.0120.00.991883.380.411.560white00.5874660.412534
235.10.420.011.50.01725.0102.00.98943.380.3612.371white00.5874660.412534
245.10.470.021.30.03418.044.00.99213.90.6212.860red00.5874660.412534
255.10.520.062.70.05230.079.00.99323.320.439.350white00.5874660.412534
265.20.170.270.70.0311.068.00.992183.30.419.850white00.5874660.412534
275.20.1850.221.00.0347.0123.00.992183.550.4410.1560white00.5874660.412534
285.20.210.311.70.04817.061.00.989533.240.3712.071white00.5528910.447109
295.20.240.453.80.02721.0128.00.9923.550.4911.281white00.5528910.447109
305.30.2750.247.40.03828.0114.00.993133.380.5111.060white00.5874660.412534
315.30.30.164.20.02937.0100.00.99053.30.3611.881white00.5874660.412534
325.30.30.21.10.07748.0166.00.99443.30.548.740white00.5874660.412534
335.30.30.31.20.02925.093.00.987423.310.413.671white00.5528910.447109
345.30.310.3810.50.03153.0140.00.993213.340.4611.760white00.5528910.447109
355.30.40.253.90.03145.0130.00.990723.310.5811.7571white00.5874660.412534
365.30.570.011.70.0545.027.00.99343.570.8412.571red00.5874660.412534
375.40.180.244.80.04130.0113.00.994453.420.49.460white00.5874660.412534
385.40.220.291.20.04569.0152.00.991783.760.6311.071white00.5528910.447109
395.40.450.276.40.03320.0102.00.989443.220.2713.481white00.5874660.412534
405.40.460.152.10.02629.0130.00.989533.390.7713.481white00.5874660.412534
415.40.530.162.70.03634.0128.00.988563.20.5313.281white00.5874660.412534
425.40.530.162.70.03634.0128.00.988563.20.5313.281white00.5874660.412534
435.40.590.077.00.04536.0147.00.99443.340.579.760white00.5874660.412534
445.40.5950.12.80.04226.080.00.99323.360.389.350white00.5874660.412534
455.40.8350.081.20.04613.093.00.99243.570.8513.071red00.5874660.412534
465.50.120.331.00.03823.0131.00.991643.250.459.850white00.5528910.447109
475.50.140.274.60.02922.0104.00.99493.340.449.050white00.5874660.412534
485.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white00.5528910.447109
495.50.180.225.50.03710.086.00.991563.460.4412.250white00.5874660.412534
505.50.240.451.70.04622.0113.00.992243.220.4810.050white00.5528910.447109
515.50.3150.382.60.03310.069.00.99093.120.5910.860white00.5528910.447109
525.50.320.454.90.02825.0191.00.99223.510.4911.571white00.5528910.447109
535.50.340.262.20.02131.0119.00.989193.550.4913.081white00.5874660.412534
545.50.3750.381.70.03617.098.00.991423.290.3910.560white00.5528910.447109
555.50.420.091.60.01918.068.00.99063.330.5111.471white00.5874660.412534
565.50.490.031.80.04428.087.00.99083.50.8214.081red00.5874660.412534
575.60.120.264.30.03818.097.00.994773.360.469.250white00.5874660.412534
585.60.180.581.250.03429.0129.00.989843.510.612.071white00.5528910.447109
595.60.1850.197.10.04836.0110.00.994383.260.419.560white00.5874660.412534
605.60.1850.491.10.0328.0117.00.99183.550.4510.360white00.5528910.447109
615.60.190.270.90.0452.0103.00.990263.50.3911.250white00.5874660.412534
625.60.190.474.50.0319.0112.00.99223.560.4511.260white00.5528910.447109
635.60.210.244.40.02737.0150.00.9913.30.3111.571white00.5874660.412534
645.60.210.41.30.04181.0147.00.99013.220.9511.681white00.5528910.447109
655.60.230.258.00.04331.0101.00.994293.190.4210.460white00.5874660.412534
665.60.2350.291.20.04733.0127.00.9913.340.511.071white00.5528910.447109
675.60.240.342.00.04114.073.00.989813.040.4511.671white00.5528910.447109
685.60.260.2710.60.0327.0119.00.99473.40.3410.771white00.5874660.412534
695.60.290.050.80.03811.030.00.99243.360.359.250white00.5874660.412534
705.60.30.16.40.04334.0142.00.993823.140.489.850white00.5874660.412534
715.60.310.371.40.07412.096.00.99543.320.589.250red00.5528910.447109
725.60.320.337.40.03725.095.00.992683.250.4911.160white00.5528910.447109
735.60.350.371.00.0386.072.00.99023.370.3411.450white00.5528910.447109
745.60.490.134.50.03917.0116.00.99073.420.913.771white00.5874660.412534
755.60.660.02.20.0873.011.00.993783.710.6312.871red00.5874660.412534
765.60.6950.066.80.0429.084.00.994323.440.4410.250white00.5874660.412534
775.60.9150.02.10.04117.078.00.993463.680.7311.450red00.5874660.412534
785.70.120.265.50.03421.099.00.993243.090.579.960white00.5874660.412534
795.70.140.35.40.04526.0105.00.994693.320.459.350white00.5528910.447109
805.70.160.266.30.04328.0113.00.99363.060.589.960white00.5874660.412534
815.70.180.224.20.04225.0111.00.9943.350.399.450white00.5874660.412534
825.70.180.262.20.02321.095.00.98933.070.5412.360white00.5874660.412534
835.70.180.361.20.0469.071.00.991993.70.6810.971white00.5528910.447109
845.70.210.242.30.04760.0189.00.9953.650.7210.160white00.5874660.412534
855.70.220.216.00.04441.0113.00.998623.220.468.960white00.6145220.385478
865.70.220.281.30.02726.0101.00.989483.350.3812.571white00.5528910.447109
875.70.240.476.30.06935.0182.00.993913.110.469.7550white00.5528910.447109
885.70.250.2612.50.04952.5120.00.996913.080.459.460white00.6145220.385478
895.70.250.3212.20.04143.0127.00.995243.230.5310.471white00.5528910.447109
905.70.260.274.10.20173.5189.50.99423.270.389.460white00.5874660.412534
915.70.2650.286.90.03646.0150.00.992993.360.4410.871white00.5528910.447109
925.70.270.169.00.05332.0111.00.994743.360.3710.460white00.5874660.412534
935.70.290.167.90.04448.0197.00.995123.210.369.450white00.5874660.412534
945.70.360.344.20.02621.077.00.99073.410.4511.960white00.5528910.447109
955.70.370.31.10.02924.088.00.988833.180.3911.760white00.5528910.447109
965.80.130.2212.70.05824.0183.00.99563.320.4211.760white00.5874660.412534
975.80.150.491.10.04821.098.00.99293.190.489.250white00.5528910.447109
985.80.180.371.10.03631.096.00.989423.160.4812.060white00.5528910.447109
995.80.190.241.30.04438.0128.00.993623.770.610.650white00.5874660.412534
1005.80.20.161.40.04244.099.00.989123.230.3712.260white00.5874660.412534
Rows: 1-100 | Columns: 17

Note

Probabilities are added to the vDataFrame, and VerticaPy uses the corresponding probability function in SQL behind the scenes. You can use the pos_label parameter to add only the probability of the selected category.

Confusion Matrix#

You can obtain the confusion matrix of your choice by specifying the desired cutoff.

model.confusion_matrix(cutoff = 0.5)
Out[4]: 
array([[1046,    0],
       [ 260,    0]])

Note

In classification, the cutoff is a threshold value used to determine class assignment based on predicted probabilities or scores from a classification model. In binary classification, if the predicted probability for a specific class is greater than or equal to the cutoff, the instance is assigned to the positive class; otherwise, it is assigned to the negative class. Adjusting the cutoff allows for trade-offs between true positives and false positives, enabling the model to be optimized for specific objectives or to consider the relative costs of different classification errors. The choice of cutoff is critical for tailoring the model’s performance to meet specific needs.

Main Plots (Classification Curves)#

Classification models allow for the creation of various plots that are very helpful in understanding the model, such as the ROC Curve, PRC Curve, Cutoff Curve, Gain Curve, and more.

Most of the classification curves can be found in the Machine Learning - Classification Curve.

For example, let’s draw the model’s ROC curve.

model.roc_curve()

Important

Most of the curves have a parameter called nbins, which is essential for estimating metrics. The larger the nbins, the more precise the estimation, but it can significantly impact performance. Exercise caution when increasing this parameter excessively.

Hint

In binary classification, various curves can be easily plotted. However, in multi-class classification, it’s important to select the pos_label, representing the class to be treated as positive when drawing the curve.

Other Plots#

Tree models can be visualized by drawing their tree plots. For more examples, check out Machine Learning - Tree Plots.

model.plot_tree()
../_images/machine_learning_vertica_tree_xgb_classifier_.png

Note

The above example may not render properly in the doc because of the huge size of the tree. But it should render nicely in jupyter environment.

In order to plot graph using graphviz separately, you can extract the graphviz DOT file code as follows:

model.to_graphviz()
Out[5]: 'digraph Tree {\ngraph [bgcolor="#FFFFFF00"];\n0 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n0 -> 1 [label="<= 0.995755", color="#666666", fontcolor="#666666"]\n0 -> 2 [label="> 0.995755", color="#666666", fontcolor="#666666"]\n1 [label="\\"citric_acid\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n1 -> 3 [label="<= 0.276667", color="#666666", fontcolor="#666666"]\n1 -> 4 [label="> 0.276667", color="#666666", fontcolor="#666666"]\n2 [label="\\"volatile_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n2 -> 5 [label="<= 0.288333", color="#666666", fontcolor="#666666"]\n2 -> 6 [label="> 0.288333", color="#666666", fontcolor="#666666"]\n3 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa" color="#666666"><FONT color="#000000"><b>prediction: 0 </b></FONT></td></tr><tr><td port="port0" border="1" align="left" color="#666666"><FONT color="#666666">logodds(0): 1.3</FONT></td></tr><tr><td port="port1" border="1" align="left" color="#666666"><FONT color="#666666">logodds(1): -1.3</FONT></td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n4 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa" color="#666666"><FONT color="#000000"><b>prediction: 0 </b></FONT></td></tr><tr><td port="port0" border="1" align="left" color="#666666"><FONT color="#666666">logodds(0): 0.77</FONT></td></tr><tr><td port="port1" border="1" align="left" color="#666666"><FONT color="#666666">logodds(1): -0.77</FONT></td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n5 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa" color="#666666"><FONT color="#000000"><b>prediction: 0 </b></FONT></td></tr><tr><td port="port0" border="1" align="left" color="#666666"><FONT color="#666666">logodds(0): 1.36</FONT></td></tr><tr><td port="port1" border="1" align="left" color="#666666"><FONT color="#666666">logodds(1): -1.36</FONT></td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n6 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#87cefa" color="#666666"><FONT color="#000000"><b>prediction: 0 </b></FONT></td></tr><tr><td port="port0" border="1" align="left" color="#666666"><FONT color="#666666">logodds(0): 1.8</FONT></td></tr><tr><td port="port1" border="1" align="left" color="#666666"><FONT color="#666666">logodds(1): -1.8</FONT></td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n}'

This string can then be copied into a DOT file which can beparsed by graphviz.

Contour plot is another useful plot that can be produced for models with two predictors.

model.contour()

Important

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[6]: 
{'max_ntree': 3,
 'max_depth': 3,
 'nbins': 6,
 'split_proposal_method': 'global',
 'tol': 0.001,
 'learning_rate': 0.1,
 'min_split_loss': 0,
 'weight_reg': 0,
 'sample': 0.7,
 'col_sample_by_tree': 1,
 'col_sample_by_node': 1}

And to manually change some of the parameters:

model.set_params({'max_depth': 5})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The preceding methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL query equivalent of the XGB model by:

model.to_sql()
Out[8]: '(CASE WHEN (1 / (1 + EXP(- (-1.412017691588585 + 0.1 * ((CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN -1.30265 ELSE -0.771546 END) ELSE (CASE WHEN "volatile_acidity" < 0.288333 THEN -1.36398 ELSE -1.79872 END) END) + (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN -1.20561 ELSE -0.70595 END) ELSE (CASE WHEN "citric_acid" < 0.276667 THEN -1.71445 ELSE -1.32159 END) END) + (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN -1.02674 ELSE -0.646106 END) ELSE (CASE WHEN "citric_acid" < 0.276667 THEN -1.58518 ELSE -1.1753 END) END)))))) / ((1 / (1 + EXP(- (1.412017691588585 + 0.1 * ((CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN 1.30265 ELSE 0.771546 END) ELSE (CASE WHEN "volatile_acidity" < 0.288333 THEN 1.36398 ELSE 1.79872 END) END) + (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN 1.20561 ELSE 0.70595 END) ELSE (CASE WHEN "citric_acid" < 0.276667 THEN 1.71445 ELSE 1.32159 END) END) + (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN 1.02674 ELSE 0.646106 END) ELSE (CASE WHEN "citric_acid" < 0.276667 THEN 1.58518 ELSE 1.1753 END) END)))))) + (1 / (1 + EXP(- (-1.412017691588585 + 0.1 * ((CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN -1.30265 ELSE -0.771546 END) ELSE (CASE WHEN "volatile_acidity" < 0.288333 THEN -1.36398 ELSE -1.79872 END) END) + (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN -1.20561 ELSE -0.70595 END) ELSE (CASE WHEN "citric_acid" < 0.276667 THEN -1.71445 ELSE -1.32159 END) END) + (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "citric_acid" < 0.276667 THEN -1.02674 ELSE -0.646106 END) ELSE (CASE WHEN "citric_acid" < 0.276667 THEN -1.58518 ELSE -1.1753 END) END))))))) > 0.5 THEN 1 ELSE 0 END)'

Note

This SQL query can be directly used in any database.

Deploy SQL

To get the SQL query which uses Vertica functions use below:

model.deploySQL()
Out[9]: 'PREDICT_XGB_CLASSIFIER("fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" USING PARAMETERS model_name = \'"public"."_verticapy_tmp_xgbclassifier_v_demo_a3eeba18e22c11eea3a80242ac120002_"\', match_by_pos = \'true\')'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[11]: array([0])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, max_ntree: int = 10, max_depth: int = 5, nbins: int = 32, split_proposal_method: Literal['local', 'global'] = 'global', tol: float = 0.001, learning_rate: float = 0.1, min_split_loss: float = 0.0, weight_reg: float = 0.0, sample: float = 1.0, col_sample_by_tree: float = 1.0, col_sample_by_node: float = 1.0) None#

Must be overridden in the child class

Methods

__init__([name, overwrite_model, max_ntree, ...])

Must be overridden in the child class

classification_report([metrics, cutoff, ...])

Computes a classification report using multiple model evaluation metrics (auc, accuracy, f1...).

confusion_matrix([pos_label, cutoff])

Computes the model confusion matrix.

contour([pos_label, nbins, chart])

Draws the model's contour plot.

cutoff_curve([pos_label, nbins, show, chart])

Draws the model Cutoff curve.

deploySQL([X, pos_label, cutoff, allSQL])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([tree_id, show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_score([tree_id])

Returns the feature importance metrics for the input tree.

get_tree([tree_id])

Returns a table with all the input tree information.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

lift_chart([pos_label, nbins, show, chart])

Draws the model Lift Chart.

plot([max_nb_points, chart])

Draws the model.

plot_tree([tree_id, pic_path])

Draws the input tree.

prc_curve([pos_label, nbins, show, chart])

Draws the model PRC curve.

predict(vdf[, X, name, cutoff, inplace])

Predicts using the input relation.

predict_proba(vdf[, X, name, pos_label, inplace])

Returns the model's probabilities using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

report([metrics, cutoff, labels, nbins])

Computes a classification report using multiple model evaluation metrics (auc, accuracy, f1...).

roc_curve([pos_label, nbins, show, chart])

Draws the model ROC curve.

score([metric, average, pos_label, cutoff, ...])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_graphviz([tree_id, classes_color, ...])

Returns the code for a Graphviz tree.

to_json([path])

Creates a Python XGBoost JSON file

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes