Loading...

verticapy.machine_learning.vertica.linear_model.Ridge#

class verticapy.machine_learning.vertica.linear_model.Ridge(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: int | float | Decimal = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs'] = 'newton', fit_intercept: bool = True)#

Creates a Ridge object using the Vertica Linear Regression algorithm. Ridge is a regularized regression method which uses an L2 penalty.

Parameters#

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

tol: float, optional

Determines whether the algorithm has reached the specified accuracy result.

C: PythonNumber, optional

The regularization parameter value. The value must be zero or non-negative.

max_iter: int, optional

Determines the maximum number of iterations the algorithm performs before achieving the specified accuracy result.

solver: str, optional

The optimizer method used to train the model.

  • newton:

    Newton Method.

  • bfgs:

    Broyden Fletcher Goldfarb Shanno.

fit_intercept: bool, optional

boolean, specifies whether the model includes an intercept. If set to False, no intercept is used in training the model. Note that setting fit_intercept to False does not work well with the BFGS optimizer.

Attributes#

Many attributes are created during the fitting phase.

coef_: numpy.array

The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.

intercept_: float

The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.

features_importance_: numpy.array

The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization#

First we import the Ridge model:

from verticapy.machine_learning.vertica import Ridge

Then we can create the model:

model = Ridge(
    tol = 1e-6,
    C = 0.5,
    max_iter = 100,
    solver = 'newton',
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Features Importance#

We can conveniently get the features importance:

result = model.features_importance()

Note

For LinearModel, feature importance is computed using the coefficients. These coefficients are then normalized using the feature distribution. An activation function is applied to get the final score.

Metrics#

We can get the entire report using:

model.report()
value
explained_variance0.0865521300857649
max_error3.15595692681663
median_absolute_error0.61196953647091
mean_absolute_error0.643058682698766
mean_squared_error0.689600238151533
root_mean_squared_error0.830421723073002
r20.0865284162752785
r2_adj0.0822895690190152
aic-468.973639871281
bic-432.945341766824
Rows: 1-10 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["mse", "r2"]).

For LinearModel, we can easily get the ANOVA table using:

model.report(metrics = "anova")
Df
SS
MS
F
p_value
Regression696.457898898211716.0763164830352823.1869869198902274.070113559173087e-26
Residual1293896.4803095969930.6933335727741632
Total1299981.399230769231
Rows: 1-3 | Columns: 6

You can also use the LinearModel.score function to compute the R-squared value:

model.score()
Out[2]: 0.0865284162752784

Prediction#

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.90.2250.44.20.0329.0118.00.9893.570.3612.881white6.10843798669332
24.60.4450.01.40.05311.0178.00.994263.790.5510.250white5.74515317663849
34.70.3350.141.30.03669.0168.00.992123.470.4610.550white5.95676878863389
44.70.4550.181.90.03633.0106.00.987463.210.8314.071white5.82589666937926
54.70.670.091.00.025.09.00.987223.30.3413.650white5.62174793942182
64.80.210.2110.20.03717.0112.00.993243.660.4812.271white5.95395179251997
75.00.240.195.00.04317.0101.00.994383.670.5710.050white5.98171209041981
85.00.240.212.20.03931.0100.00.990983.690.6211.760white6.05775142902207
95.00.240.341.10.03449.0158.00.987743.320.3213.171white6.12204954401955
105.00.270.41.20.07642.0124.00.992043.320.4710.160white5.94904474485632
115.00.310.06.40.04643.0166.00.9943.30.639.960white5.83982943939801
125.00.40.54.30.04629.080.00.99023.490.6613.660red5.85204915063731
135.00.440.0418.60.03938.0128.00.99853.370.5710.260white5.48348083050568
145.10.140.250.70.03915.089.00.99193.220.439.260white6.20471520957603
155.10.260.346.40.03426.099.00.994493.230.419.260white5.98076052692241
165.10.290.288.30.02627.0107.00.993083.360.3711.060white5.93330293484756
175.10.30.32.30.04840.0150.00.989443.290.4612.260white5.97458281310437
185.10.470.021.30.03418.044.00.99213.90.6212.860red5.78274013262337
195.10.520.062.70.05230.079.00.99323.320.439.350white5.6454750874792
205.10.5850.01.70.04414.086.00.992643.560.9412.971red5.60324610276077
215.20.1550.331.60.02813.059.00.989753.30.8411.981white6.22317770807741
225.20.240.453.80.02721.0128.00.9923.550.4911.281white6.09486423345167
235.20.250.231.40.04720.077.00.990013.320.6211.450white6.04054021837348
245.20.310.365.10.03146.0145.00.98973.140.3112.471white5.97265705646475
255.20.340.376.20.03142.0133.00.990763.250.4112.560white5.91522680820782
265.20.370.331.20.02813.081.00.99023.370.3811.760white5.97160278555761
275.20.480.041.60.05419.0106.00.99273.540.6212.271red5.70472468101083
285.30.20.313.60.03622.091.00.992783.410.59.860white6.09586224730847
295.30.230.560.90.04146.0141.00.991193.160.629.750white6.13208758536893
305.30.30.21.10.07748.0166.00.99443.30.548.740white5.87369718231285
315.30.360.276.30.02840.0132.00.991863.370.411.660white5.88021645921113
325.30.3950.071.30.03526.0102.00.9923.50.3510.660white5.87543477279074
335.30.40.253.90.03145.0130.00.990723.310.5811.7571white5.86631645639643
345.30.470.11.30.03611.074.00.990823.480.5411.240white5.79134270746598
355.30.5850.077.10.04434.0145.00.99453.340.579.760white5.51140980187688
365.40.150.322.50.03710.051.00.988783.040.5812.660white6.18726160303294
375.40.230.361.50.0374.0121.00.989763.240.9912.171white6.13220094299661
385.40.240.182.30.0522.0145.00.992073.240.4610.350white6.01204873852826
395.40.290.381.20.02931.0132.00.988953.280.3612.460white6.07454378555203
405.40.310.473.00.05346.0144.00.99313.290.7610.050white5.94352992796419
415.40.330.314.00.0327.0108.00.990313.30.4312.271white5.9605044914881
425.40.450.276.40.03320.0102.00.989443.220.2713.481white5.76418397805691
435.40.8350.081.20.04613.093.00.99243.570.8513.071red5.31742757279011
445.50.120.331.00.03823.0131.00.991643.250.459.850white6.23620048638922
455.50.140.274.60.02922.0104.00.99493.340.449.050white6.15695022584561
465.50.160.311.20.02631.068.00.98983.330.4411.6560white6.22552996659593
475.50.170.232.90.03910.0108.00.992433.280.510.050white6.12375674095573
485.50.180.225.50.03710.086.00.991563.460.4412.250white6.07473992574445
495.50.230.192.20.04439.0161.00.992093.190.4310.460white6.04471297889935
505.50.240.451.70.04622.0113.00.992243.220.4810.050white6.07079443378033
515.50.3350.32.50.07127.0128.00.99243.140.519.660white5.84604103284023
525.50.420.091.60.01918.068.00.99063.330.5111.471white5.89587420443235
535.60.120.264.30.03818.097.00.994773.360.469.250white6.1571770895706
545.60.120.332.90.04421.073.00.988963.170.3212.981white6.19444443451544
555.60.180.292.30.045.047.00.991263.070.4510.140white6.13123797195249
565.60.190.461.10.03233.0115.00.99093.360.510.460white6.18928582426923
575.60.20.362.50.04816.0125.00.992823.490.4910.060white6.08344718791378
585.60.250.192.40.04942.0166.00.9923.250.4310.460white6.00190864062262
595.60.250.263.60.03718.0115.00.99043.420.512.660white6.03328515956367
605.60.260.181.40.03418.0135.00.991743.320.3510.260white6.05248510028079
615.60.290.050.80.03811.030.00.99243.360.359.250white5.99440616388841
625.60.340.11.30.03120.068.00.99063.360.5111.271white5.96093436339748
635.60.490.134.50.03917.0116.00.99073.420.913.771white5.70581112959064
645.60.540.041.70.0495.013.00.99423.720.5811.450red5.63865519737962
655.60.6950.066.80.0429.084.00.994323.440.4410.250white5.38884426273561
665.70.180.361.20.0469.071.00.991993.70.6810.971white6.13843290297179
675.70.220.2216.650.04439.0110.00.998553.240.489.060white5.78553970489162
685.70.220.331.90.03637.0110.00.989453.260.5812.460white6.11423981749716
695.70.2450.331.10.04928.0150.00.99273.130.429.350white6.04659834097183
705.70.250.2612.50.04952.5120.00.996913.080.459.460white5.8179607944091
715.70.250.2710.80.0558.0116.00.995923.10.59.860white5.84940832326855
725.70.2550.651.20.07917.0137.00.993073.20.429.450white5.98460847971077
735.70.260.2510.40.027.057.00.9943.390.3710.650white5.94001483938645
745.70.260.31.80.03930.0105.00.989953.480.5212.571white6.05304918006373
755.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.95385890769005
765.70.280.2417.50.04460.0167.00.99893.310.449.450white5.70062417599866
775.70.320.181.40.02926.0104.00.99063.440.3711.060white5.99968413335003
785.70.330.321.40.04328.093.00.98973.310.512.360white5.96788586311034
795.70.3350.341.00.0413.0174.00.9923.270.6610.050white5.97218612944839
805.70.6950.066.80.0429.084.00.994323.440.4410.250white5.38826866915463
815.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.92921687387901
825.80.170.341.80.04596.0170.00.990353.380.911.881white6.14578368444199
835.80.190.2510.80.04233.0124.00.996463.220.419.260white5.94006502568112
845.80.20.271.40.03112.077.00.99053.250.3610.971white6.14920719746286
855.80.20.31.50.03121.057.00.991153.440.5511.060white6.14921620504262
865.80.250.2811.10.05645.0175.00.997553.420.439.550white5.82071502657557
875.80.260.181.20.03140.0114.00.99083.420.411.071white6.06741532303104
885.80.270.2212.70.05842.0206.00.99463.320.3812.360white5.76569739722008
895.80.270.41.20.07647.0130.00.991853.130.4510.360white5.94514607854924
905.80.280.31.50.02631.0114.00.989523.320.612.571white6.07492096667251
915.80.280.33.90.02636.0105.00.989633.260.5812.7560white6.03297039872318
925.80.280.669.10.03926.0159.00.99653.660.5510.850white5.92775077554895
935.80.290.151.10.02912.083.00.98983.30.411.460white6.03895500222515
945.80.3150.1919.40.03128.0106.00.997042.970.410.5560white5.66488631567812
955.80.320.22.60.02717.0123.00.989363.360.7813.971white5.99180030119596
965.80.330.235.00.05329.0106.00.994583.130.529.050white5.84397489616469
975.80.3350.145.80.04649.0197.00.99373.30.7110.350white5.83625363270187
985.80.340.216.60.0450.0167.00.99413.290.6210.050white5.84289594266857
995.80.3450.1510.80.03326.0120.00.994943.250.4910.060white5.7740873761151
1005.80.360.321.70.03322.096.00.98983.030.3811.260white5.95633085349367
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Plots#

If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.

model.plot()

Important

The plotting feature is typically suitable for models with fewer than three predictors.

Contour plot is another useful plot that can be produced for models with two predictors.

model.contour()

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[3]: 
{'tol': 1e-06,
 'C': 0.5,
 'max_iter': 100,
 'solver': 'newton',
 'fit_intercept': True}

And to manually change some of the parameters:

model.set_params({'tol': 0.001})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The following methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL code by:

model.to_sql()
Out[5]: '10.1835576295052 + -0.00575593580984446 * "fixed_acidity" + -1.19454071075188 * "volatile_acidity" + 0.138515335768389 * "citric_acid" + -0.0173090764317649 * "residual_sugar" + -3.0421150501038 * "chlorides" + -3.71622284633486 * "density"'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[7]: array([6.20810963])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: int | float | Decimal = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs'] = 'newton', fit_intercept: bool = True) None#

Methods

__init__([name, overwrite_model, tol, C, ...])

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

predict(vdf[, X, name, inplace])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

regression_report([metrics])

Computes a regression report

report([metrics])

Computes a regression report

score([metric])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes