
verticapy.machine_learning.vertica.linear_model.Ridge¶
- class verticapy.machine_learning.vertica.linear_model.Ridge(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: Annotated[int | float | Decimal, 'Python Numbers'] = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs'] = 'newton', fit_intercept: bool = True)¶
Creates a
Ridge
object using the Vertica Linear Regression algorithm. Ridge is a regularized regression method which uses anL2
penalty.Parameters¶
- name: str, optional
Name of the model. The model is stored in the database.
- overwrite_model: bool, optional
If set to
True
, training a model with the same name as an existing model overwrites the existing model.- tol: float, optional
Determines whether the algorithm has reached the specified accuracy result.
- C: PythonNumber, optional
The regularization parameter value. The value must be zero or non-negative.
- max_iter: int, optional
Determines the maximum number of iterations the algorithm performs before achieving the specified accuracy result.
- solver: str, optional
The optimizer method used to train the model.
- newton:
Newton Method.
- bfgs:
Broyden Fletcher Goldfarb Shanno.
- fit_intercept: bool, optional
boolean
, specifies whether the model includes an intercept. If set toFalse
, no intercept is used in training the model. Note that settingfit_intercept
toFalse
does not work well with the BFGS optimizer.
Attributes¶
Many attributes are created during the fitting phase.
- coef_: numpy.array
The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.
- intercept_: float
The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.
- features_importance_: numpy.array
The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the
features_importance()
method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.
Note
All attributes can be accessed using the
get_attributes()
method.Note
Several other attributes can be accessed by using the
get_vertica_attributes()
method.Examples¶
The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.
Load data for machine learning¶
We import
verticapy
:import verticapy as vp
Hint
By assigning an alias to
verticapy
, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions fromverticapy
are used as intended without interfering with functions from other libraries.For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Note
VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.
You can easily divide your dataset into training and testing subsets using the
vDataFrame.
train_test_split()
method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Warning
In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the
vDataFrame.
to_db()
method to save your results intotables
ortemporary tables
. This will help enhance the overall performance of the process.Model Initialization¶
First we import the
Ridge
model:from verticapy.machine_learning.vertica import Ridge
Then we can create the model:
model = Ridge( tol = 1e-6, C = 0.5, max_iter = 100, solver = 'newton', )
Hint
In
verticapy
1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.Important
The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.
Model Training¶
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err | t_value |p_value ----------------+-----------+--------+---------+-------- Intercept | 10.08514 | 1.13967| 8.84920 | 0.00000 fixed_acidity | 0.00384 | 0.01040| 0.36914 | 0.71203 volatile_acidity| -1.19341 | 0.08641|-13.81023| 0.00000 citric_acid | 0.14327 | 0.09642| 1.48588 | 0.13737 residual_sugar | -0.01446 | 0.00254|-5.70477 | 0.00000 chlorides | -2.76907 | 0.34645|-7.99280 | 0.00000 density | -3.72278 | 1.15705|-3.21748 | 0.00130 ============== regularization ============== type| lambda ----+-------- l2 | 0.50000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_36c300fc55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_36d42ed655a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='l2', lambda=0.5, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5198
Important
To train a model, you can directly use the
vDataFrame
or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. Inverticapy
, we don’t work usingX
matrices andy
vectors. Instead, we work directly with lists of predictors and the response name.Features Importance¶
We can conveniently get the features importance:
result = model.features_importance()
Note
For
LinearModel
, feature importance is computed using the coefficients. These coefficients are then normalized using the feature distribution. An activation function is applied to get the final score.Metrics¶
We can get the entire report using:
model.report()
value explained_variance 0.10475921795036 max_error 3.09952375396546 median_absolute_error 0.594859162933446 mean_absolute_error 0.641690926687895 mean_squared_error 0.703573316089301 root_mean_squared_error 0.838792773031159 r2 0.104608513127264 r2_adj 0.100450348327546 aic -442.54390137609 bic -406.52111586048 Rows: 1-10 | Columns: 2Important
Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g.
model.report(metrics = ["mse", "r2"])
.For
LinearModel
, we can easily get the ANOVA table using:model.report(metrics = "anova")
Df SS MS F p_value Regression 6 82.774784199617 13.795797366602834 19.502523480825896 7.01203776650385e-22 Residual 1292 913.941737600002 0.707385245820435 Total 1298 1020.71747498075 Rows: 1-3 | Columns: 6You can also use the
LinearModel.score
function to compute the R-squared value:model.score() Out[2]: 0.104608513127264
Prediction¶
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 6.1581107693001 2 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 5.62560734543574 3 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 6.0180142568452 4 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 5.75879788248025 5 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 5.99034951713043 6 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 5.79216995459253 7 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 5.82927323001207 8 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 5.80753946177035 9 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 5.6739555213926 10 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 6.02852466697427 11 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 6.05201984905419 12 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 5.94003031101684 13 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 5.94880735938442 14 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 5.96156377369825 15 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 5.88670800448152 16 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white 6.06043176845689 17 5.2 0.285 0.29 5.15 0.035 64.0 138.0 0.9895 3.19 0.34 12.4 8 1 white 5.95143225375049 18 5.2 0.37 0.33 1.2 0.028 13.0 81.0 0.9902 3.37 0.38 11.7 6 0 white 5.92963750308583 19 5.2 0.44 0.04 1.4 0.036 43.0 119.0 0.9894 3.36 0.33 12.1 8 1 white 5.78248379742129 20 5.2 0.5 0.18 2.0 0.036 23.0 129.0 0.98949 3.36 0.77 13.4 7 1 white 5.72192315466866 21 5.2 0.6 0.07 7.0 0.044 33.0 147.0 0.9944 3.33 0.58 9.7 5 0 white 5.47406708444593 22 5.2 0.645 0.0 2.15 0.08 15.0 28.0 0.99444 3.78 0.61 12.5 6 0 red 5.38065429697981 23 5.3 0.31 0.38 10.5 0.031 53.0 140.0 0.99321 3.34 0.46 11.7 6 0 white 5.85475282251409 24 5.3 0.395 0.07 1.3 0.035 26.0 102.0 0.992 3.5 0.35 10.6 6 0 white 5.83540538851319 25 5.3 0.43 0.11 1.1 0.029 6.0 51.0 0.99076 3.51 0.48 11.2 4 0 white 5.82349063223583 26 5.3 0.47 0.11 2.2 0.048 16.0 89.0 0.99182 3.54 0.88 13.5666666666667 7 1 red 5.70328450941663 27 5.3 0.715 0.19 1.5 0.161 7.0 62.0 0.99395 3.62 0.61 11.0 5 0 red 5.11165251140514 28 5.4 0.17 0.27 2.7 0.049 28.0 104.0 0.99224 3.46 0.55 10.3 6 0 white 6.07304797029249 29 5.4 0.18 0.24 4.8 0.041 30.0 113.0 0.99445 3.42 0.4 9.4 6 0 white 6.04036477691031 30 5.4 0.3 0.3 1.2 0.029 25.0 93.0 0.98742 3.31 0.4 13.6 7 1 white 6.01722598092342 31 5.4 0.46 0.15 2.1 0.026 29.0 130.0 0.98953 3.39 0.77 13.4 8 1 white 5.79222453324541 32 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 5.67736029610965 33 5.4 0.74 0.09 1.7 0.089 16.0 26.0 0.99402 3.67 0.56 11.6 6 0 red 5.26409406363967 34 5.5 0.14 0.27 4.6 0.029 22.0 104.0 0.9949 3.34 0.44 9.0 5 0 white 6.1272296096027 35 5.5 0.16 0.22 4.5 0.03 30.0 102.0 0.9938 3.24 0.36 9.4 6 0 white 6.09897053522098 36 5.5 0.21 0.25 1.2 0.04 18.0 75.0 0.99006 3.31 0.56 11.3 6 0 white 6.07756501657963 37 5.5 0.3 0.25 1.9 0.029 33.0 118.0 0.98972 3.36 0.66 12.5 6 0 white 5.99175865806088 38 5.5 0.31 0.29 3.0 0.027 16.0 102.0 0.99067 3.23 0.56 11.2 6 0 white 5.97164547254143 39 5.5 0.49 0.03 1.8 0.044 28.0 87.0 0.9908 3.5 0.82 14.0 8 1 red 5.68938229611872 40 5.6 0.12 0.33 2.9 0.044 21.0 73.0 0.98896 3.17 0.32 12.9 8 1 white 6.16524539873479 41 5.6 0.16 0.27 1.4 0.044 53.0 168.0 0.9918 3.28 0.37 10.1 6 0 white 6.12003770456401 42 5.6 0.18 0.3 10.2 0.028 28.0 131.0 0.9954 3.49 0.42 10.8 7 1 white 6.00407965073839 43 5.6 0.18 0.31 1.5 0.038 16.0 84.0 0.9924 3.34 0.58 10.1 6 0 white 6.11483463423053 44 5.6 0.185 0.49 1.1 0.03 28.0 117.0 0.9918 3.55 0.45 10.3 6 0 white 6.16482823807431 45 5.6 0.2 0.36 2.5 0.048 16.0 125.0 0.99282 3.49 0.49 10.0 6 0 white 6.05441078619112 46 5.6 0.2 0.66 10.2 0.043 78.0 175.0 0.9945 2.98 0.43 10.4 7 1 white 5.99360281090669 47 5.6 0.205 0.16 12.55 0.051 31.0 115.0 0.99564 3.4 0.38 10.8 6 0 white 5.85561220776055 48 5.6 0.21 0.4 1.3 0.041 81.0 147.0 0.9901 3.22 0.95 11.6 8 1 white 6.09507485426166 49 5.6 0.225 0.24 9.8 0.054 59.0 140.0 0.99545 3.17 0.39 10.2 6 0 white 5.87538422348789 50 5.6 0.24 0.34 2.0 0.041 14.0 73.0 0.98981 3.04 0.45 11.6 7 1 white 6.04163073279539 51 5.6 0.26 0.0 10.2 0.038 13.0 111.0 0.99315 3.44 0.46 12.4 6 0 white 5.8463120748685 52 5.6 0.28 0.28 4.2 0.044 52.0 158.0 0.992 3.35 0.44 10.7 7 1 white 5.93701548529835 53 5.6 0.49 0.13 4.5 0.039 17.0 116.0 0.9907 3.42 0.9 13.7 7 1 white 5.6792555552396 54 5.6 0.49 0.13 4.5 0.039 17.0 116.0 0.9907 3.42 0.9 13.7 7 1 white 5.6792555552396 55 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 5.3466393489625 56 5.7 0.15 0.28 3.7 0.045 57.0 151.0 0.9913 3.22 0.27 11.2 6 0 white 6.09961144672695 57 5.7 0.21 0.25 1.1 0.035 26.0 81.0 0.9902 3.31 0.52 11.4 6 0 white 6.09310359999852 58 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.80221154404535 59 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 5.7959353311976 60 5.7 0.22 0.25 1.1 0.05 97.0 175.0 0.99099 3.44 0.62 11.1 6 0 white 6.03669246713584 61 5.7 0.22 0.28 1.3 0.027 26.0 101.0 0.98948 3.35 0.38 12.5 7 1 white 6.10740761862798 62 5.7 0.24 0.3 1.3 0.03 25.0 98.0 0.98968 3.37 0.43 12.4 7 1 white 6.07735312213784 63 5.7 0.24 0.47 6.3 0.069 35.0 182.0 0.99391 3.11 0.46 9.73333333333333 5 0 white 5.90564314552214 64 5.7 0.245 0.33 1.1 0.049 28.0 150.0 0.9927 3.13 0.42 9.3 5 0 white 6.01472197171785 65 5.7 0.25 0.21 1.5 0.044 21.0 108.0 0.99142 3.3 0.59 11.0 6 0 white 6.00438722647371 66 5.7 0.25 0.22 9.8 0.049 50.0 125.0 0.99571 3.2 0.45 10.1 6 0 white 5.85594511223744 67 5.7 0.255 0.65 1.2 0.079 17.0 137.0 0.99307 3.2 0.42 9.4 5 0 white 5.96273791613126 68 5.7 0.26 0.25 10.4 0.02 7.0 57.0 0.994 3.39 0.37 10.6 5 0 white 5.926299239936 69 5.7 0.26 0.3 1.8 0.039 30.0 105.0 0.98995 3.48 0.52 12.5 7 1 white 6.02032576556431 70 5.7 0.27 0.32 1.2 0.046 20.0 155.0 0.9934 3.8 0.41 10.2 6 0 white 5.98770893044358 71 5.7 0.28 0.24 17.5 0.044 60.0 167.0 0.9989 3.31 0.44 9.4 5 0 white 5.71359825825548 72 5.7 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 6.00327059203897 73 5.7 0.28 0.36 1.8 0.041 38.0 90.0 0.99002 3.27 0.98 11.9 7 1 white 5.99925506322023 74 5.7 0.31 0.28 4.1 0.03 22.0 86.0 0.99062 3.31 0.38 11.7 7 1 white 5.94694823214762 75 5.7 0.31 0.29 7.3 0.05 33.0 143.0 0.99332 3.31 0.5 11.0666666666667 6 0 white 5.83666027146516 76 5.7 0.33 0.15 1.9 0.05 20.0 93.0 0.9934 3.38 0.62 9.9 5 0 white 5.87054716746203 77 5.7 0.37 0.3 1.1 0.029 24.0 88.0 0.98883 3.18 0.39 11.7 6 0 white 5.93103686789883 78 5.7 0.385 0.04 12.6 0.034 22.0 115.0 0.9964 3.28 0.63 9.9 6 0 white 5.66751262350792 79 5.7 0.4 0.35 5.1 0.026 17.0 113.0 0.99052 3.18 0.67 12.4 6 0 white 5.84655425957904 80 5.7 0.4 0.35 5.1 0.026 17.0 113.0 0.99052 3.18 0.67 12.4 6 0 white 5.84655425957904 81 5.7 0.6 0.0 1.4 0.063 11.0 18.0 0.99191 3.45 0.56 12.2 6 0 red 5.50361887983655 82 5.7 0.695 0.06 6.8 0.042 9.0 84.0 0.99432 3.44 0.44 10.2 5 0 white 5.36990965490487 83 5.7 1.13 0.09 1.5 0.172 7.0 19.0 0.994 3.5 0.48 9.8 4 0 red 4.57295237383204 84 5.8 0.13 0.22 12.7 0.058 24.0 183.0 0.9956 3.32 0.42 11.7 6 0 white 5.93307732826113 85 5.8 0.17 0.34 1.8 0.045 96.0 170.0 0.99035 3.38 0.9 11.8 8 1 white 6.11574340609979 86 5.8 0.18 0.37 1.1 0.036 31.0 96.0 0.98942 3.16 0.48 12.0 6 0 white 6.14661669510357 87 5.8 0.21 0.32 1.6 0.045 38.0 95.0 0.98946 3.23 0.94 12.4 8 1 white 6.07134807658776 88 5.8 0.22 0.3 1.1 0.047 36.0 131.0 0.992 3.26 0.45 10.4 5 0 white 6.04878708411404 89 5.8 0.23 0.27 1.8 0.043 24.0 69.0 0.9933 3.38 0.31 9.4 6 0 white 6.02866620030313 90 5.8 0.24 0.28 1.4 0.038 40.0 76.0 0.98711 3.1 0.29 13.9 7 1 white 6.06084018690202 91 5.8 0.24 0.39 1.5 0.054 37.0 158.0 0.9932 3.21 0.52 9.3 6 0 white 6.00817638473896 92 5.8 0.25 0.28 11.1 0.056 45.0 175.0 0.99755 3.42 0.43 9.5 5 0 white 5.81988741223727 93 5.8 0.27 0.2 7.3 0.04 42.0 145.0 0.99442 3.15 0.48 9.8 5 0 white 5.8954818895182 94 5.8 0.27 0.2 14.95 0.044 22.0 179.0 0.9962 3.37 0.37 10.2 5 0 white 5.76712253005598 95 5.8 0.27 0.26 3.5 0.071 26.0 69.0 0.98994 3.1 0.38 11.5 6 0 white 5.88988149539098 96 5.8 0.28 0.27 2.6 0.054 30.0 156.0 0.9914 3.53 0.42 12.4 5 0 white 5.93403751161151 97 5.8 0.28 0.35 2.3 0.053 36.0 114.0 0.9924 3.28 0.5 10.2 4 0 white 5.9488847926279 98 5.8 0.29 0.27 1.6 0.062 17.0 140.0 0.99138 3.23 0.35 11.1 6 0 white 5.91449024231645 99 5.8 0.29 0.38 10.7 0.038 49.0 136.0 0.99366 3.11 0.59 11.2 6 0 white 5.85658899187506 100 5.8 0.3 0.23 1.5 0.034 37.0 121.0 0.98871 2.96 0.34 12.1 6 0 white 5.98574577195907 Rows: 1-100 | Columns: 15Note
Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the
vDataFrame
to thepredict()
function, but in this case, it’s essential that the column names of thevDataFrame
match the predictors and response name in the model.Plots¶
If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.
model.plot()
Important
The plotting feature is typically suitable for models with fewer than three predictors.
Contour plot is another useful plot that can be produced for models with two predictors.
model.contour()
Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.
Parameter Modification¶
In order to see the parameters:
model.get_params() Out[3]: {'tol': 1e-06, 'C': 0.5, 'max_iter': 100, 'solver': 'newton', 'fit_intercept': True}
And to manually change some of the parameters:
model.set_params({'tol': 0.001})
Model Register¶
In order to register the model for tracking and versioning:
model.register("model_v1")
Please refer to Model Tracking and Versioning for more details on model tracking and versioning.
Model Exporting¶
To Memmodel
model.to_memmodel()
Note
MemModel
objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle ascikit-learn
model.The following methods for exporting the model use
MemModel
, and it is recommended to useMemModel
directly.To SQL
You can get the SQL code by:
model.to_sql() Out[5]: '10.0851441446575 + 0.00383960848823506 * "fixed_acidity" + -1.19340517436103 * "volatile_acidity" + 0.143269004984589 * "citric_acid" + -0.0144649042237432 * "residual_sugar" + -2.76907217897133 * "chlorides" + -3.72278282848129 * "density"'
To Python
To obtain the prediction function in Python syntax, use the following code:
X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]] model.to_python()(X) Out[7]: array([6.15844582])
Hint
The
to_python()
method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.- __init__(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: Annotated[int | float | Decimal, 'Python Numbers'] = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs'] = 'newton', fit_intercept: bool = True) None ¶
Methods
__init__
([name, overwrite_model, tol, C, ...])contour
([nbins, chart])Draws the model's contour plot.
deploySQL
([X])Returns the SQL code needed to deploy the model.
does_model_exists
(name[, raise_error, ...])Checks whether the model is stored in the Vertica database.
drop
()Drops the model from the Vertica database.
export_models
(name, path[, kind])Exports machine learning models.
features_importance
([show, chart])Computes the model's features importance.
fit
(input_relation, X, y[, test_relation, ...])Trains the model.
get_attributes
([attr_name])Returns the model attributes.
get_match_index
(x, col_list[, str_check])Returns the matching index.
Returns the parameters of the model.
get_plotting_lib
([class_name, chart, ...])Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.
get_vertica_attributes
([attr_name])Returns the model Vertica attributes.
import_models
(path[, schema, kind])Imports machine learning models.
plot
([max_nb_points, chart])Draws the model.
predict
(vdf[, X, name, inplace])Predicts using the input relation.
register
(registered_name[, raise_error])Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.
regression_report
([metrics])Computes a regression report
report
([metrics])Computes a regression report
score
([metric])Computes the model score.
set_params
([parameters])Sets the parameters of the model.
Summarizes the model.
to_binary
(path)Exports the model to the Vertica Binary format.
Converts the model to an InMemory object that can be used for different types of predictions.
to_pmml
(path)Exports the model to PMML.
to_python
([return_proba, ...])Returns the Python function needed for in-memory scoring without using built-in Vertica functions.
to_sql
([X, return_proba, ...])Returns the SQL code needed to deploy the model without using built-in Vertica functions.
to_tf
(path)Exports the model to the Frozen Graph format (TensorFlow).
Attributes