Loading...

verticapy.machine_learning.vertica.svm.LinearSVC

class verticapy.machine_learning.vertica.svm.LinearSVC(name: str = None, overwrite_model: bool = False, tol: float = 0.0001, C: float = 1.0, intercept_scaling: float = 1.0, intercept_mode: Literal['regularized', 'unregularized'] = 'regularized', class_weight: Literal['auto', 'none'] | list = [1, 1], max_iter: int = 100)

Creates a LinearSVC object using the Vertica Support Vector Machine (SVM) algorithm on the data. Given a set of training examples, where each is marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier.

Parameters

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

tol: float, optional

Tolerance for stopping criteria. This is used to control accuracy.

C: float, optional

Weight for misclassification cost. The algorithm minimizes the regularization cost and the misclassification cost.

intercept_scaling: float

A float value, serves as the value of a dummy feature whose coefficient Vertica uses to calculate the model intercept. Because the dummy feature is not in the training data, its values are set to a constant, by default set to 1.

intercept_mode: str, optional

Specify how to treat the intercept.

  • regularized:

    Fits the intercept and applies a regularization.

  • unregularized:

    Fits the intercept but does not include it in regularization.

class_weight: str | list, optional

Specifies how to determine weights for the two classes. It can be a list of 2 elements or one of the following methods:

  • auto:

    Weights each class according to the number of samples.

  • none:

    No weights are used.

max_iter: int, optional

The maximum number of iterations that the algorithm performs.

Attributes

Many attributes are created during the fitting phase.

coef_: numpy.array

The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.

intercept_: float

The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.

features_importance_: numpy.array

The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

classes_: numpy.array

The classes labels.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization

First we import the LinearSVC model:

from verticapy.machine_learning.vertica import LinearSVC

Then we can create the model:

model = LinearSVC(
    tol = 1e-4,
    C = 1.0,
    intercept_scaling = 1.0,
    intercept_mode = "regularized",
    class_weight = [1, 1],
    max_iter = 100,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density"
    ],
    "good",
    test,
)



=======
details
=======
   predictor    |coefficient
----------------+-----------
   Intercept    |  1.51057  
 fixed_acidity  |  0.01071  
volatile_acidity| -0.51127  
  citric_acid   |  0.12824  
 residual_sugar | -0.01789  
   chlorides    | -4.95417  
    density     | -1.70361  


===========
call_string
===========
SELECT svm_classifier('"public"."_verticapy_tmp_linearsvc_v_demo_dc64dddc55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_dc77380655a411ef880f0242ac120002_"', '"good"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS class_weights='1,1', C=1, max_iterations=100, intercept_mode='regularized', intercept_scaling=1, epsilon=0.0001);

===============
Additional Info
===============
       Name       |Value
------------------+-----
accepted_row_count|5192 
rejected_row_count|  0  
 iteration_count  | 13  

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Features Importance

We can conveniently get the features importance:

result = model.features_importance()

Note

For LinearModel, feature importance is computed using the coefficients. These coefficients are then normalized using the feature distribution. An activation function is applied to get the final score.

Metrics

We can get the entire report using:

model.report()
value
auc0.674371533196334
prc_auc0.3028371815163968
accuracy0.8130268199233717
log_loss0.231551072438412
precision0.0
recall0.0
f1_score0.0
mcc0.0
informedness0.0
markedness-0.18697318007662833
csi0.0
Rows: 1-11 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["auc", "accuracy"]).

For classification models, we can easily modify the cutoff to observe the effect on different metrics:

model.report(cutoff = 0.2)
value
auc0.674371533196334
prc_auc0.3028371815163968
accuracy0.19770114942528735
log_loss0.231551072438412
precision0.1890007745933385
recall1.0
f1_score0.3179153094462541
mcc0.049938801796684494
informedness0.013195098963242113
markedness0.18900077459333842
csi0.1890007745933385
Rows: 1-11 | Columns: 2

You can also use the LinearModel.score function to compute any classification metric. The default metric is the accuracy:

model.score()
Out[3]: 0.8130268199233717

Prediction

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density"
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Integer
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white0
24.50.190.210.950.03389.0159.00.993323.340.428.050white0
34.70.60.172.30.05817.0106.00.99323.850.612.960red0
44.70.670.091.00.025.09.00.987223.30.3413.650white0
54.80.650.121.10.0134.010.00.992463.320.3613.540white0
64.90.3450.341.00.06832.0143.00.991383.240.410.150white0
75.00.170.561.50.02624.0115.00.99063.480.3910.871white0
85.00.2350.2711.750.0334.0118.00.99543.070.59.460white0
95.00.240.195.00.04317.0101.00.994383.670.5710.050white0
105.00.330.2311.80.0323.0158.00.993223.410.6411.860white0
115.00.350.257.80.03124.0116.00.992413.390.411.360white0
125.00.550.148.30.03235.0164.00.99183.530.5112.581white0
135.00.740.01.20.04116.046.00.992584.010.5912.560red0
145.01.040.241.60.0532.096.00.99343.740.6211.550red0
155.10.1650.225.70.04742.0146.00.99343.180.559.960white0
165.10.310.30.90.03728.0152.00.9923.540.5610.160white0
175.10.330.221.60.02718.089.00.98933.510.3812.571white0
185.10.350.266.80.03436.0120.00.991883.380.411.560white0
195.10.350.266.80.03436.0120.00.991883.380.411.560white0
205.10.350.266.80.03436.0120.00.991883.380.411.560white0
215.10.510.182.10.04216.0101.00.99243.460.8712.971red0
225.20.1850.221.00.0347.0123.00.992183.550.4410.1560white0
235.20.240.453.80.02721.0128.00.9923.550.4911.281white0
245.20.4050.151.450.03810.044.00.991253.520.411.640white0
255.30.160.391.00.02840.0101.00.991563.570.5910.660white0
265.30.160.391.00.02840.0101.00.991563.570.5910.660white0
275.30.230.560.90.04146.0141.00.991193.160.629.750white0
285.30.310.3810.50.03153.0140.00.993213.340.4611.760white0
295.30.320.126.60.04322.0141.00.99373.360.610.460white0
305.30.320.239.650.02626.0119.00.991683.180.5312.260white0
315.30.570.011.70.0545.027.00.99343.570.8412.571red0
325.30.760.032.70.04327.093.00.99323.340.389.250white0
335.40.230.361.50.0374.0121.00.989763.240.9912.171white0
345.40.420.272.00.09223.055.00.994713.780.6412.371red0
355.40.50.135.00.02812.0107.00.990793.480.8813.571white0
365.50.140.274.60.02922.0104.00.99493.340.449.050white0
375.50.160.224.50.0330.0102.00.99383.240.369.460white0
385.50.160.311.20.02631.068.00.98983.330.4411.6560white0
395.50.170.232.90.03910.0108.00.992433.280.510.050white0
405.50.180.225.50.03710.086.00.991563.460.4412.250white0
415.50.240.328.70.0619.0102.00.9943.270.3110.450white0
425.50.30.251.90.02933.0118.00.989723.360.6612.560white0
435.50.420.091.60.01918.068.00.99063.330.5111.471white0
445.50.490.031.80.04428.087.00.99083.50.8214.081red0
455.60.120.332.90.04421.073.00.988963.170.3212.981white0
465.60.1850.197.10.04836.0110.00.994383.260.419.560white0
475.60.190.270.90.0452.0103.00.990263.50.3911.250white0
485.60.190.391.10.04317.067.00.99183.230.5310.360white0
495.60.20.221.30.04925.0155.00.992963.740.4310.050white0
505.60.20.362.50.04816.0125.00.992823.490.4910.060white0
515.60.210.244.40.02737.0150.00.9913.30.3111.571white0
525.60.210.41.30.04181.0147.00.99013.220.9511.681white0
535.60.220.321.20.02429.097.00.988233.20.4613.0571white0
545.60.2450.259.70.03212.068.00.9943.310.3410.550white0
555.60.250.192.40.04942.0166.00.9923.250.4310.460white0
565.60.250.263.60.03718.0115.00.99043.420.512.660white0
575.60.270.370.90.02511.049.00.988453.290.3313.160white0
585.60.280.273.90.04352.0158.00.992023.350.4410.771white0
595.60.280.284.20.04452.0158.00.9923.350.4410.771white0
605.60.2950.22.20.04918.0134.00.993783.210.6810.050white0
615.60.30.16.40.04334.0142.00.993823.140.489.850white0
625.60.330.281.20.03133.097.00.991263.490.5810.960white0
635.60.340.252.50.04647.0182.00.990933.210.411.350white0
645.60.410.227.10.0544.0154.00.99313.30.410.550white0
655.60.540.041.70.0495.013.00.99423.720.5811.450red0
665.60.660.02.20.0873.011.00.993783.710.6312.871red0
675.60.6950.066.80.0429.084.00.994323.440.4410.250white0
685.60.9150.02.10.04117.078.00.993463.680.7311.450red0
695.70.150.283.70.04557.0151.00.99133.220.2711.260white0
705.70.160.266.30.04328.0113.00.99363.060.589.960white0
715.70.180.224.20.04225.0111.00.9943.350.399.450white0
725.70.180.262.20.02321.095.00.98933.070.5412.360white0
735.70.210.242.30.04760.0189.00.9953.650.7210.160white0
745.70.230.289.650.02526.0121.00.99253.280.3811.360white0
755.70.250.211.50.04421.0108.00.991423.30.5911.060white0
765.70.250.229.80.04950.0125.00.995713.20.4510.160white0
775.70.2550.651.20.07917.0137.00.993073.20.429.450white0
785.70.260.274.10.20173.5189.50.99423.270.389.460white0
795.70.2650.286.90.03646.0150.00.992993.360.4410.871white0
805.70.280.33.90.02636.0105.00.989633.260.5812.7560white0
815.70.280.351.20.05239.0141.00.991083.440.6911.360white0
825.70.310.284.10.0322.086.00.990623.310.3811.771white0
835.70.3350.341.00.0413.0174.00.9923.270.6610.050white0
845.70.40.355.10.02617.0113.00.990523.180.6712.460white0
855.70.410.211.90.04830.0112.00.991383.290.5511.260white0
865.70.430.35.70.03924.098.00.9923.540.6112.371white0
875.70.440.137.00.02528.0173.00.99133.330.4812.560white0
885.70.460.461.40.0431.0169.00.99323.130.478.850white0
895.80.170.31.40.03755.0130.00.99093.290.3811.360white0
905.80.170.341.80.04596.0170.00.990353.380.911.881white0
915.80.170.341.80.04596.0170.00.990353.380.911.881white0
925.80.190.241.30.04438.0128.00.993623.770.610.650white0
935.80.190.494.90.0444.0118.00.99353.340.389.571white0
945.80.20.161.40.04244.099.00.989123.230.3712.260white0
955.80.220.291.30.03625.068.00.988653.240.3512.660white0
965.80.230.22.00.04339.0154.00.992263.210.3910.260white0
975.80.230.271.80.04324.069.00.99333.380.319.460white0
985.80.250.2811.10.05645.0175.00.997553.420.439.550white0
995.80.260.249.20.04455.0152.00.99613.310.389.450white0
1005.80.270.2712.30.04555.0170.00.99723.280.429.360white0
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Probabilities

It is also easy to get the model’s probabilities:

model.predict_proba(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density"
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Integer
123
prediction_0
Float(22)
123
prediction_1
Float(22)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white00.6620303051642940.337969694835706
24.50.190.210.950.03389.0159.00.993323.340.428.050white00.5948719474730550.405128052526945
34.70.60.172.30.05817.0106.00.99323.850.612.960red00.6779900922762270.322009907723774
44.70.670.091.00.025.09.00.987223.30.3413.650white00.638509069717260.36149093028274
54.80.650.121.10.0134.010.00.992463.320.3613.540white00.6294344276786960.370565572321304
64.90.3450.341.00.06832.0143.00.991383.240.410.150white00.6487201396103130.351279860389687
75.00.170.561.50.02624.0115.00.99063.480.3910.871white00.5730240922682530.426975907731747
85.00.2350.2711.750.0334.0118.00.99543.070.59.460white00.64013920851450.3598607914855
95.00.240.195.00.04317.0101.00.994383.670.5710.050white00.6296482003856750.370351799614325
105.00.330.2311.80.0323.0158.00.993223.410.6411.860white00.6517747921843360.348225207815664
115.00.350.257.80.03124.0116.00.992413.390.411.360white00.6379628202179890.362037179782011