
verticapy.machine_learning.vertica.svm.LinearSVC¶
- class verticapy.machine_learning.vertica.svm.LinearSVC(name: str = None, overwrite_model: bool = False, tol: float = 0.0001, C: float = 1.0, intercept_scaling: float = 1.0, intercept_mode: Literal['regularized', 'unregularized'] = 'regularized', class_weight: Literal['auto', 'none'] | list = [1, 1], max_iter: int = 100)¶
Creates a LinearSVC object using the Vertica Support Vector Machine (SVM) algorithm on the data. Given a set of training examples, where each is marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier.
Parameters¶
- name: str, optional
Name of the model. The model is stored in the database.
- overwrite_model: bool, optional
If set to
True
, training a model with the same name as an existing model overwrites the existing model.- tol: float, optional
Tolerance for stopping criteria. This is used to control accuracy.
- C: float, optional
Weight for misclassification cost. The algorithm minimizes the regularization cost and the misclassification cost.
- intercept_scaling: float
A float value, serves as the value of a dummy feature whose coefficient Vertica uses to calculate the model intercept. Because the dummy feature is not in the training data, its values are set to a constant, by default set to 1.
- intercept_mode: str, optional
Specify how to treat the intercept.
- regularized:
Fits the intercept and applies a regularization.
- unregularized:
Fits the intercept but does not include it in regularization.
- class_weight: str | list, optional
Specifies how to determine weights for the two classes. It can be a list of 2 elements or one of the following methods:
- auto:
Weights each class according to the number of samples.
- none:
No weights are used.
- max_iter: int, optional
The maximum number of iterations that the algorithm performs.
Attributes¶
Many attributes are created during the fitting phase.
- coef_: numpy.array
The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.
- intercept_: float
The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.
- features_importance_: numpy.array
The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the
features_importance()
method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.- classes_: numpy.array
The classes labels.
Note
All attributes can be accessed using the
get_attributes()
method.Note
Several other attributes can be accessed by using the
get_vertica_attributes()
method.Examples¶
The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.
Load data for machine learning¶
We import
verticapy
:import verticapy as vp
Hint
By assigning an alias to
verticapy
, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions fromverticapy
are used as intended without interfering with functions from other libraries.For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Note
VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.
You can easily divide your dataset into training and testing subsets using the
vDataFrame.
train_test_split()
method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Warning
In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the
vDataFrame.
to_db()
method to save your results intotables
ortemporary tables
. This will help enhance the overall performance of the process.Model Initialization¶
First we import the
LinearSVC
model:from verticapy.machine_learning.vertica import LinearSVC
Then we can create the model:
model = LinearSVC( tol = 1e-4, C = 1.0, intercept_scaling = 1.0, intercept_mode = "regularized", class_weight = [1, 1], max_iter = 100, )
Hint
In
verticapy
1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.Important
The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.
Model Training¶
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "good", test, ) ======= details ======= predictor |coefficient ----------------+----------- Intercept | 1.51057 fixed_acidity | 0.01071 volatile_acidity| -0.51127 citric_acid | 0.12824 residual_sugar | -0.01789 chlorides | -4.95417 density | -1.70361 =========== call_string =========== SELECT svm_classifier('"public"."_verticapy_tmp_linearsvc_v_demo_dc64dddc55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_dc77380655a411ef880f0242ac120002_"', '"good"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS class_weights='1,1', C=1, max_iterations=100, intercept_mode='regularized', intercept_scaling=1, epsilon=0.0001); =============== Additional Info =============== Name |Value ------------------+----- accepted_row_count|5192 rejected_row_count| 0 iteration_count | 13
Important
To train a model, you can directly use the
vDataFrame
or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. Inverticapy
, we don’t work usingX
matrices andy
vectors. Instead, we work directly with lists of predictors and the response name.Features Importance¶
We can conveniently get the features importance:
result = model.features_importance()
Note
For
LinearModel
, feature importance is computed using the coefficients. These coefficients are then normalized using the feature distribution. An activation function is applied to get the final score.Metrics¶
We can get the entire report using:
model.report()
value auc 0.674371533196334 prc_auc 0.3028371815163968 accuracy 0.8130268199233717 log_loss 0.231551072438412 precision 0.0 recall 0.0 f1_score 0.0 mcc 0.0 informedness 0.0 markedness -0.18697318007662833 csi 0.0 Rows: 1-11 | Columns: 2Important
Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g.
model.report(metrics = ["auc", "accuracy"])
.For classification models, we can easily modify the
cutoff
to observe the effect on different metrics:model.report(cutoff = 0.2)
value auc 0.674371533196334 prc_auc 0.3028371815163968 accuracy 0.19770114942528735 log_loss 0.231551072438412 precision 0.1890007745933385 recall 1.0 f1_score 0.3179153094462541 mcc 0.049938801796684494 informedness 0.013195098963242113 markedness 0.18900077459333842 csi 0.1890007745933385 Rows: 1-11 | Columns: 2You can also use the
LinearModel.score
function to compute any classification metric. The default metric is the accuracy:model.score() Out[3]: 0.8130268199233717
Prediction¶
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 0 2 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 0 3 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 0 4 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 0 5 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 0 6 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 0 7 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 0 8 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 0 9 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 0 10 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 0 11 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 0 12 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 0 13 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 0 14 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 0 15 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 0 16 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 0 17 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 0 18 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 0 19 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 0 20 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 0 21 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 0 22 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 0 23 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white 0 24 5.2 0.405 0.15 1.45 0.038 10.0 44.0 0.99125 3.52 0.4 11.6 4 0 white 0 25 5.3 0.16 0.39 1.0 0.028 40.0 101.0 0.99156 3.57 0.59 10.6 6 0 white 0 26 5.3 0.16 0.39 1.0 0.028 40.0 101.0 0.99156 3.57 0.59 10.6 6 0 white 0 27 5.3 0.23 0.56 0.9 0.041 46.0 141.0 0.99119 3.16 0.62 9.7 5 0 white 0 28 5.3 0.31 0.38 10.5 0.031 53.0 140.0 0.99321 3.34 0.46 11.7 6 0 white 0 29 5.3 0.32 0.12 6.6 0.043 22.0 141.0 0.9937 3.36 0.6 10.4 6 0 white 0 30 5.3 0.32 0.23 9.65 0.026 26.0 119.0 0.99168 3.18 0.53 12.2 6 0 white 0 31 5.3 0.57 0.01 1.7 0.054 5.0 27.0 0.9934 3.57 0.84 12.5 7 1 red 0 32 5.3 0.76 0.03 2.7 0.043 27.0 93.0 0.9932 3.34 0.38 9.2 5 0 white 0 33 5.4 0.23 0.36 1.5 0.03 74.0 121.0 0.98976 3.24 0.99 12.1 7 1 white 0 34 5.4 0.42 0.27 2.0 0.092 23.0 55.0 0.99471 3.78 0.64 12.3 7 1 red 0 35 5.4 0.5 0.13 5.0 0.028 12.0 107.0 0.99079 3.48 0.88 13.5 7 1 white 0 36 5.5 0.14 0.27 4.6 0.029 22.0 104.0 0.9949 3.34 0.44 9.0 5 0 white 0 37 5.5 0.16 0.22 4.5 0.03 30.0 102.0 0.9938 3.24 0.36 9.4 6 0 white 0 38 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.65 6 0 white 0 39 5.5 0.17 0.23 2.9 0.039 10.0 108.0 0.99243 3.28 0.5 10.0 5 0 white 0 40 5.5 0.18 0.22 5.5 0.037 10.0 86.0 0.99156 3.46 0.44 12.2 5 0 white 0 41 5.5 0.24 0.32 8.7 0.06 19.0 102.0 0.994 3.27 0.31 10.4 5 0 white 0 42 5.5 0.3 0.25 1.9 0.029 33.0 118.0 0.98972 3.36 0.66 12.5 6 0 white 0 43 5.5 0.42 0.09 1.6 0.019 18.0 68.0 0.9906 3.33 0.51 11.4 7 1 white 0 44 5.5 0.49 0.03 1.8 0.044 28.0 87.0 0.9908 3.5 0.82 14.0 8 1 red 0 45 5.6 0.12 0.33 2.9 0.044 21.0 73.0 0.98896 3.17 0.32 12.9 8 1 white 0 46 5.6 0.185 0.19 7.1 0.048 36.0 110.0 0.99438 3.26 0.41 9.5 6 0 white 0 47 5.6 0.19 0.27 0.9 0.04 52.0 103.0 0.99026 3.5 0.39 11.2 5 0 white 0 48 5.6 0.19 0.39 1.1 0.043 17.0 67.0 0.9918 3.23 0.53 10.3 6 0 white 0 49 5.6 0.2 0.22 1.3 0.049 25.0 155.0 0.99296 3.74 0.43 10.0 5 0 white 0 50 5.6 0.2 0.36 2.5 0.048 16.0 125.0 0.99282 3.49 0.49 10.0 6 0 white 0 51 5.6 0.21 0.24 4.4 0.027 37.0 150.0 0.991 3.3 0.31 11.5 7 1 white 0 52 5.6 0.21 0.4 1.3 0.041 81.0 147.0 0.9901 3.22 0.95 11.6 8 1 white 0 53 5.6 0.22 0.32 1.2 0.024 29.0 97.0 0.98823 3.2 0.46 13.05 7 1 white 0 54 5.6 0.245 0.25 9.7 0.032 12.0 68.0 0.994 3.31 0.34 10.5 5 0 white 0 55 5.6 0.25 0.19 2.4 0.049 42.0 166.0 0.992 3.25 0.43 10.4 6 0 white 0 56 5.6 0.25 0.26 3.6 0.037 18.0 115.0 0.9904 3.42 0.5 12.6 6 0 white 0 57 5.6 0.27 0.37 0.9 0.025 11.0 49.0 0.98845 3.29 0.33 13.1 6 0 white 0 58 5.6 0.28 0.27 3.9 0.043 52.0 158.0 0.99202 3.35 0.44 10.7 7 1 white 0 59 5.6 0.28 0.28 4.2 0.044 52.0 158.0 0.992 3.35 0.44 10.7 7 1 white 0 60 5.6 0.295 0.2 2.2 0.049 18.0 134.0 0.99378 3.21 0.68 10.0 5 0 white 0 61 5.6 0.3 0.1 6.4 0.043 34.0 142.0 0.99382 3.14 0.48 9.8 5 0 white 0 62 5.6 0.33 0.28 1.2 0.031 33.0 97.0 0.99126 3.49 0.58 10.9 6 0 white 0 63 5.6 0.34 0.25 2.5 0.046 47.0 182.0 0.99093 3.21 0.4 11.3 5 0 white 0 64 5.6 0.41 0.22 7.1 0.05 44.0 154.0 0.9931 3.3 0.4 10.5 5 0 white 0 65 5.6 0.54 0.04 1.7 0.049 5.0 13.0 0.9942 3.72 0.58 11.4 5 0 red 0 66 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 0 67 5.6 0.695 0.06 6.8 0.042 9.0 84.0 0.99432 3.44 0.44 10.2 5 0 white 0 68 5.6 0.915 0.0 2.1 0.041 17.0 78.0 0.99346 3.68 0.73 11.4 5 0 red 0 69 5.7 0.15 0.28 3.7 0.045 57.0 151.0 0.9913 3.22 0.27 11.2 6 0 white 0 70 5.7 0.16 0.26 6.3 0.043 28.0 113.0 0.9936 3.06 0.58 9.9 6 0 white 0 71 5.7 0.18 0.22 4.2 0.042 25.0 111.0 0.994 3.35 0.39 9.4 5 0 white 0 72 5.7 0.18 0.26 2.2 0.023 21.0 95.0 0.9893 3.07 0.54 12.3 6 0 white 0 73 5.7 0.21 0.24 2.3 0.047 60.0 189.0 0.995 3.65 0.72 10.1 6 0 white 0 74 5.7 0.23 0.28 9.65 0.025 26.0 121.0 0.9925 3.28 0.38 11.3 6 0 white 0 75 5.7 0.25 0.21 1.5 0.044 21.0 108.0 0.99142 3.3 0.59 11.0 6 0 white 0 76 5.7 0.25 0.22 9.8 0.049 50.0 125.0 0.99571 3.2 0.45 10.1 6 0 white 0 77 5.7 0.255 0.65 1.2 0.079 17.0 137.0 0.99307 3.2 0.42 9.4 5 0 white 0 78 5.7 0.26 0.27 4.1 0.201 73.5 189.5 0.9942 3.27 0.38 9.4 6 0 white 0 79 5.7 0.265 0.28 6.9 0.036 46.0 150.0 0.99299 3.36 0.44 10.8 7 1 white 0 80 5.7 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 0 81 5.7 0.28 0.35 1.2 0.052 39.0 141.0 0.99108 3.44 0.69 11.3 6 0 white 0 82 5.7 0.31 0.28 4.1 0.03 22.0 86.0 0.99062 3.31 0.38 11.7 7 1 white 0 83 5.7 0.335 0.34 1.0 0.04 13.0 174.0 0.992 3.27 0.66 10.0 5 0 white 0 84 5.7 0.4 0.35 5.1 0.026 17.0 113.0 0.99052 3.18 0.67 12.4 6 0 white 0 85 5.7 0.41 0.21 1.9 0.048 30.0 112.0 0.99138 3.29 0.55 11.2 6 0 white 0 86 5.7 0.43 0.3 5.7 0.039 24.0 98.0 0.992 3.54 0.61 12.3 7 1 white 0 87 5.7 0.44 0.13 7.0 0.025 28.0 173.0 0.9913 3.33 0.48 12.5 6 0 white 0 88 5.7 0.46 0.46 1.4 0.04 31.0 169.0 0.9932 3.13 0.47 8.8 5 0 white 0 89 5.8 0.17 0.3 1.4 0.037 55.0 130.0 0.9909 3.29 0.38 11.3 6 0 white 0 90 5.8 0.17 0.34 1.8 0.045 96.0 170.0 0.99035 3.38 0.9 11.8 8 1 white 0 91 5.8 0.17 0.34 1.8 0.045 96.0 170.0 0.99035 3.38 0.9 11.8 8 1 white 0 92 5.8 0.19 0.24 1.3 0.044 38.0 128.0 0.99362 3.77 0.6 10.6 5 0 white 0 93 5.8 0.19 0.49 4.9 0.04 44.0 118.0 0.9935 3.34 0.38 9.5 7 1 white 0 94 5.8 0.2 0.16 1.4 0.042 44.0 99.0 0.98912 3.23 0.37 12.2 6 0 white 0 95 5.8 0.22 0.29 1.3 0.036 25.0 68.0 0.98865 3.24 0.35 12.6 6 0 white 0 96 5.8 0.23 0.2 2.0 0.043 39.0 154.0 0.99226 3.21 0.39 10.2 6 0 white 0 97 5.8 0.23 0.27 1.8 0.043 24.0 69.0 0.9933 3.38 0.31 9.4 6 0 white 0 98 5.8 0.25 0.28 11.1 0.056 45.0 175.0 0.99755 3.42 0.43 9.5 5 0 white 0 99 5.8 0.26 0.24 9.2 0.044 55.0 152.0 0.9961 3.31 0.38 9.4 5 0 white 0 100 5.8 0.27 0.27 12.3 0.045 55.0 170.0 0.9972 3.28 0.42 9.3 6 0 white 0 Rows: 1-100 | Columns: 15Note
Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the
vDataFrame
to thepredict()
function, but in this case, it’s essential that the column names of thevDataFrame
match the predictors and response name in the model.Probabilities¶
It is also easy to get the model’s probabilities:
model.predict_proba( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction123prediction_0123prediction_11 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 0 0.662030305164294 0.337969694835706 2 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 0 0.594871947473055 0.405128052526945 3 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 0 0.677990092276227 0.322009907723774 4 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 0 0.63850906971726 0.36149093028274 5 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 0 0.629434427678696 0.370565572321304 6 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 0 0.648720139610313 0.351279860389687 7 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 0 0.573024092268253 0.426975907731747 8 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 0 0.6401392085145 0.3598607914855 9 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 0 0.629648200385675 0.370351799614325 10 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 0 0.651774792184336 0.348225207815664 11 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 0 0.637962820217989 0.362037179782011