Loading...

verticapy.machine_learning.vertica.linear_model.PoissonRegressor.predict

PoissonRegressor.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 154.64961 | 6.81109|22.70556 | 0.00000
 fixed_acidity  |  0.15863  | 0.01229|12.90462 | 0.00000
volatile_acidity| -0.81136  | 0.08633|-9.39797 | 0.00000
  citric_acid   | -0.17596  | 0.09376|-1.87676 | 0.06061
 residual_sugar |  0.04258  | 0.00380|11.21447 | 0.00000
   chlorides    |  0.15585  | 0.39070| 0.39890 | 0.68998
    density     |-150.68484 | 6.92726|-21.75246| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_32a9511a55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_32b8f70055a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5198 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.40.540.095.10.03852.097.00.990223.410.412.271white5.90556011265582
24.70.670.091.00.025.09.00.987223.30.3413.650white6.12234824762473
34.80.2250.381.20.07447.0130.00.991323.310.410.360white5.84736479778968
44.80.340.06.50.02833.0163.00.99393.360.619.960white5.65065473176924
54.80.650.121.10.0134.010.00.992463.320.3613.540white5.36273854495903
64.90.2350.2711.750.0334.0118.00.99543.070.59.460white5.70202653092392
74.90.330.311.20.01639.0150.00.987133.330.5914.081white6.41268212581315
85.00.30.333.70.0354.0173.00.98873.360.313.071white6.32142139455814
95.00.330.161.50.04910.097.00.99173.480.4410.760white5.78422638119699
105.00.330.184.60.03240.0124.00.991143.180.411.060white5.99443604819677
115.00.350.257.80.03124.0116.00.992413.390.411.360white5.91061872346791
125.00.420.242.00.0619.050.00.99173.720.7414.081red5.72013066827748
135.10.1650.225.70.04742.0146.00.99343.180.559.960white5.84576315815346
145.10.30.32.30.04840.0150.00.989443.290.4612.260white6.17425151268077
155.10.330.221.60.02718.089.00.98933.510.3812.571white6.15200501911397
165.10.390.211.70.02715.072.00.98943.50.4512.560white6.0942721279747
175.10.510.182.10.04216.0101.00.99243.460.8712.971red5.56950193868161
185.10.520.062.70.05230.079.00.99323.320.439.350white5.48906137152019
195.20.1550.331.60.02813.059.00.989753.30.8411.981white6.22284944267858
205.20.160.340.80.02926.077.00.991553.250.5110.160white5.91189299872229
215.20.170.270.70.0311.068.00.992183.30.419.850white5.81706297870818
225.20.1850.221.00.0347.0123.00.992183.550.4410.1560white5.8264641401087
235.20.240.453.80.02721.0128.00.9923.550.4911.281white5.88724534871864
245.20.3350.21.70.03317.074.00.990023.340.4812.360white6.06403066345291
255.20.370.331.20.02813.081.00.99023.370.3811.760white5.96356622972093
265.20.380.267.70.05320.0103.00.99253.270.4512.260white5.90185411607592
275.20.60.077.00.04433.0147.00.99443.330.589.750white5.43927691005013
285.20.6450.02.150.0815.028.00.994443.780.6112.560red5.20815785315349
295.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.96220412322674
305.30.330.31.20.04825.0119.00.990453.320.6211.360white5.98260876680618
315.30.360.276.30.02840.0132.00.991863.370.411.660white5.96511668146729
325.30.7150.191.50.1617.062.00.993953.620.6111.050red5.19257662779776
335.40.330.314.00.0327.0108.00.990313.30.4312.271white6.13422422526114
345.40.50.135.00.02812.0107.00.990793.480.8813.571white5.99790333955826
355.40.580.081.90.05920.031.00.994843.50.6410.260red5.20435507109954
365.40.5950.12.80.04226.080.00.99323.360.389.350white5.47146016520551
375.40.740.091.70.08916.026.00.994023.670.5611.660red5.19249838967883
385.50.140.274.60.02922.0104.00.99493.340.449.050white5.64503340582635
395.50.150.3214.00.03116.099.00.994373.260.3811.581white6.10853875562546
405.50.160.224.50.0330.0102.00.99383.240.369.460white5.79925532880895
415.50.160.261.50.03235.0100.00.990763.430.7712.060white6.12287368408386
425.50.230.192.20.04439.0161.00.992093.190.4310.460white5.90965991254293
435.50.310.293.00.02716.0102.00.990673.230.5611.260white6.07254101658373
445.50.3150.382.60.03310.069.00.99093.120.5910.860white6.0018938952372
455.50.340.262.20.02131.0119.00.989193.550.4913.081white6.24149412178713
465.50.3750.381.70.03617.098.00.991423.290.3910.560white5.83700236882737
475.50.490.031.80.04428.087.00.99083.50.8214.081red5.9042103217057
485.60.180.271.70.0331.0103.00.988923.350.3712.960white6.40621436627498
495.60.180.581.250.03429.0129.00.989843.510.612.071white6.1944999243342
505.60.1850.197.10.04836.0110.00.994383.260.419.560white5.82622676211628
515.60.190.261.40.0312.076.00.99053.250.3710.971white6.14900457263602
525.60.20.6610.20.04378.0175.00.99452.980.4310.471white5.84448896788257
535.60.2050.1612.550.05131.0115.00.995643.40.3810.860white5.85793825050689
545.60.210.41.30.04181.0147.00.99013.220.9511.681white6.16587342329521
555.60.2250.249.80.05459.0140.00.995453.170.3910.260white5.73963975582669
565.60.230.258.00.04331.0101.00.994293.190.4210.460white5.83026126077615
575.60.260.265.70.03112.080.00.99233.250.3810.850white6.00422172586084
585.60.260.2710.60.0327.0119.00.99473.40.3410.771white5.84929960750628
595.60.280.46.10.03436.0118.00.991443.210.4312.171white6.11044828100907
605.60.290.050.80.03811.030.00.99243.360.359.250white5.79421768520015
615.60.310.371.40.07412.096.00.99543.320.589.250red5.30078702321552
625.60.320.337.40.03725.095.00.992683.250.4911.160white5.95928181643038
635.60.340.252.50.04647.0182.00.990933.210.411.350white6.01359541917796
645.60.410.241.90.03410.053.00.988153.320.513.571white6.3500457308231
655.60.50.092.30.04917.099.00.99373.630.6313.050red5.48648521876808
665.60.660.02.20.0873.011.00.993783.710.6312.871red5.36211277337929
675.70.1350.34.60.04219.0101.00.99463.310.429.360white5.72276972036116
685.70.20.2413.80.04744.0112.00.998372.970.668.860white5.50501243526176
695.70.220.216.00.04441.0113.00.998623.220.468.960white5.55135845730575
705.70.240.476.30.06935.0182.00.993913.110.469.7333333333333350white5.78822813837451
715.70.2450.331.10.04928.0150.00.99273.130.429.350white5.76660658184258
725.70.250.2612.50.04952.5106.00.996913.080.459.460white5.62588392218348
735.70.250.2710.80.0558.0116.00.995923.10.59.860white5.70107393149303
745.70.250.3212.20.04143.0127.00.995243.230.5310.471white5.85294957417764
755.70.260.31.80.03930.0105.00.989953.480.5212.571white6.2023449512823
765.70.270.321.20.04620.0155.00.99343.80.4110.260white5.64639300728933
775.70.280.282.20.01915.065.00.99023.060.5211.260white6.16588019868908
785.70.320.384.750.03323.094.00.9913.420.4211.871white6.10604011279858
795.70.370.31.10.02924.088.00.988833.180.3911.760white6.2504980519748
805.70.390.254.90.03349.0113.00.989663.260.5813.171white6.28042375560821
815.70.40.355.10.02617.0113.00.990523.180.6712.460white6.13255009607448
825.70.410.211.90.04830.0112.00.991383.290.5511.260white5.88665775243967
835.70.460.461.40.0431.0169.00.99323.130.478.850white5.50531709194667
845.70.6950.066.80.0429.084.00.994323.440.4410.250white5.44650100152165
855.71.130.091.50.1727.019.00.9943.50.489.840red4.93108970383943
865.80.150.491.10.04821.098.00.99293.190.489.250white5.80110337852494
875.80.180.371.10.03631.096.00.989423.160.4812.060white6.32039053026958
885.80.210.321.60.04538.095.00.989463.230.9412.481white6.32151227246038
895.80.230.22.00.04339.0154.00.992263.210.3910.260white5.92120238145765
905.80.230.313.50.04435.0158.00.989983.190.3712.171white6.30943263254417
915.80.240.281.40.03840.076.00.987113.10.2913.971white6.64871230470021
925.80.260.249.20.04455.0152.00.99613.310.389.450white5.617917705259
935.80.260.291.00.04235.0101.00.990443.360.4811.471white6.11253672312918
945.80.270.27.30.0442.0145.00.994423.150.489.850white5.78846950328347
955.80.280.33.90.02636.0105.00.989633.260.5812.7560white6.33758994830868
965.80.280.33.90.02636.0105.00.989633.260.5812.7560white6.33758994830868
975.80.290.261.70.0633.011.00.99153.390.5413.560red5.96682675158178
985.80.30.231.50.03437.0121.00.988712.960.3412.160white6.37136711050212
995.80.30.384.90.03922.086.00.989633.230.5813.171white6.35189096096408
1005.80.310.324.50.02428.094.00.989063.250.5213.771white6.42085586007394
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.