Loading...

verticapy.machine_learning.vertica.linear_model.LinearRegression.predict

LinearRegression.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 150.65060 | 6.80045|22.15304 | 0.00000
 fixed_acidity  |  0.15444  | 0.01224|12.61914 | 0.00000
volatile_acidity| -0.72957  | 0.08707|-8.37883 | 0.00000
  citric_acid   | -0.11561  | 0.09365|-1.23442 | 0.21710
 residual_sugar |  0.04568  | 0.00384|11.90866 | 0.00000
   chlorides    |  0.01656  | 0.37319| 0.04437 | 0.96461
    density     |-146.69104 | 6.91774|-21.20505| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_19f70e7855a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_1a06999c55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5201 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.70.3350.141.30.03669.0168.00.992123.470.4610.550white5.64075404806962
24.80.210.2110.20.03717.0112.00.993243.660.4812.271white5.98154436762962
34.80.290.231.10.04438.0180.00.989243.280.3411.960white6.09209150554588
44.90.3450.341.00.06832.0143.00.991383.240.410.150white5.73660392233668
55.00.240.195.00.04317.0101.00.994383.670.5710.050white5.58821192095814
65.00.240.341.10.03449.0158.00.987743.320.3213.171white6.36661240877891
75.00.310.06.40.04643.0166.00.9943.30.639.960white5.67884670558914
85.00.330.184.60.03240.0124.00.991143.180.411.060white5.9805333244978
95.00.350.257.80.03124.0116.00.992413.390.411.360white5.91770005275555
105.00.350.257.80.03124.0116.00.992413.390.411.360white5.91770005275555
115.00.420.242.00.0619.050.00.99173.720.7414.081red5.70749406672826
125.00.440.0418.60.03938.0128.00.99853.370.5710.260white5.47640596135457
135.01.020.041.40.04541.085.00.99383.750.4810.540red4.95717058247627
145.10.290.288.30.02627.0107.00.993083.360.3711.060white5.89792237798139
155.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white6.0571130592198
165.10.330.221.60.02718.089.00.98933.510.3812.571white6.12415264223804
175.10.330.276.70.02244.0129.00.992213.360.3911.071white5.92436848324232
185.10.350.266.80.03436.0120.00.991883.380.411.560white5.96410763740067
195.10.420.011.50.01725.0102.00.98943.380.3612.371white6.06336660081595
205.10.520.062.70.05230.079.00.99323.320.439.350white5.48259517451544
215.10.5850.01.70.04414.086.00.992643.560.9412.971red5.4784478311565
225.20.210.311.70.04817.061.00.989533.240.3712.071white6.18791658357154
235.20.240.453.80.02721.0128.00.9923.550.4911.281white5.88309074349382
245.20.310.365.10.03146.0145.00.98973.140.3112.471white6.23926067127471
255.20.320.251.80.10313.050.00.99573.380.559.250red5.21499548160043
265.20.340.01.80.0527.063.00.99163.680.7914.060red5.82986115737381
275.20.440.041.40.03643.0119.00.98943.360.3312.181white6.05649827011982
285.30.2750.247.40.03828.0114.00.993133.380.5111.060white5.89613375503379
295.30.30.164.20.02937.0100.00.99053.30.3611.881white6.12662685572616
305.30.360.276.30.02840.0132.00.991863.370.411.660white5.96654047222538
315.30.470.112.20.04816.089.00.991823.540.8813.671red5.72371063038895
325.30.470.112.20.04816.089.00.991823.540.8813.566666666666771red5.72371063038895
335.40.150.322.50.03710.051.00.988783.040.5812.660white6.40780001554148
345.40.180.244.80.04130.0113.00.994453.420.49.460white5.66854538004148
355.40.270.224.60.02229.0107.00.988893.330.5413.860white6.41134885234791
365.40.310.473.00.05346.0144.00.99313.290.7610.050white5.66312662765705
375.40.460.152.10.02629.0130.00.989533.390.7713.481white6.07281672147948
385.40.530.162.70.03634.0128.00.988563.20.5313.281white6.19045286149483
395.40.530.162.70.03634.0128.00.988563.20.5313.281white6.19045286149483
405.50.120.331.00.03823.0131.00.991643.250.459.850white5.95594060785757
415.50.140.274.60.02922.0104.00.99493.340.449.050white5.63435900174403
425.50.160.261.50.03235.0100.00.990763.430.7712.060white6.08667736167433
435.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white6.20791818474311
445.50.170.232.90.03910.0108.00.992433.280.510.050white5.901938779868
455.50.310.293.00.02716.0102.00.990673.230.5611.260white6.05540845177617
465.50.320.454.90.02825.0191.00.99223.510.4911.571white5.89198040748605
475.50.3750.381.70.03617.098.00.991423.290.3910.560white5.82833359389437
485.60.130.274.80.02822.0104.00.99483.340.459.260white5.68088663674683
495.60.190.312.70.02711.0100.00.989643.460.413.271white6.29347716003886
505.60.210.41.30.04181.0147.00.99013.220.9511.681white6.1372882958176
515.60.2250.249.80.05459.0140.00.995453.170.3910.260white5.74850967738109
525.60.250.263.60.03718.0115.00.99043.420.512.660white6.18527272933898
535.60.280.284.20.04452.0158.00.9923.350.4410.771white5.95388978259845
545.60.310.371.40.07412.096.00.99543.320.589.250red5.29545156316462
555.60.330.281.20.03133.097.00.991263.490.5810.960white5.88871829185075
565.60.340.252.50.04647.0182.00.990933.210.411.350white5.99292661686434
575.60.420.342.40.02234.097.00.989153.220.3812.871white6.18030185245141
585.60.660.02.20.0873.011.00.993783.710.6312.871red5.35727369895628
595.60.6950.066.80.0429.084.00.994323.440.4410.250white5.45495584161
605.70.160.266.30.04328.0113.00.99363.060.589.960white5.92039218332158
615.70.210.374.50.0458.0140.00.993323.290.6210.660white5.83000352225247
625.70.220.216.00.04441.0113.00.998623.220.468.960white5.59024361501724
635.70.220.216.00.04441.0113.00.998623.220.468.960white5.59024361501724
645.70.220.281.30.02726.0101.00.989483.350.3812.571white6.25002607268718
655.70.240.476.30.06935.0182.00.993913.110.469.7550white5.79270611468451
665.70.250.3212.20.04143.0127.00.995243.230.5310.471white5.87667953827335
675.70.260.2510.40.027.057.00.9943.390.3710.650white5.97680781783146
685.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.9582471920119
695.70.280.33.90.02636.0105.00.989633.260.5812.7560white6.30067856773712
705.70.310.297.30.0533.0143.00.993323.310.511.066666666666760white5.89435506902933
715.70.360.216.70.03851.0166.00.99413.290.6310.060white5.72510166516014
725.70.410.211.90.04830.0112.00.991383.290.5511.260white5.86854171267018
735.80.150.321.20.03714.0119.00.991373.190.510.260white6.03026746507192
745.80.170.361.30.03611.070.00.992023.430.6810.471white5.92025384515398
755.80.180.371.20.03619.074.00.988533.090.4912.771white6.41918620790983
765.80.190.241.30.04438.0128.00.993623.770.610.650white5.684962034823
775.80.190.2510.80.04233.0124.00.996463.220.419.260white5.70109648166246
785.80.240.391.50.05437.0158.00.99323.210.529.360white5.70205404864319
795.80.250.2811.10.05645.0175.00.997553.420.439.550white5.50789593577736
805.80.260.181.20.03140.0114.00.99083.420.411.071white6.04971460182421
815.80.270.27.30.0442.0145.00.994423.150.489.850white5.78786059903939
825.80.270.2212.70.05842.0206.00.99463.320.3812.360white6.00609494457251
835.80.270.2712.30.04555.0170.00.99723.280.429.360white5.60043211679925
845.80.280.181.20.0587.0108.00.992883.230.589.5540white5.73045305663439
855.80.280.272.60.05430.0156.00.99143.530.4212.450white6.0010320586081
865.80.280.669.10.03926.0159.00.99653.660.5510.850white5.50447003552625
875.80.290.151.10.02912.083.00.98983.30.411.460white6.17338608431513
885.80.290.3810.70.03849.0136.00.993663.110.5911.260white6.01921224007341
895.80.30.096.30.04236.0138.00.993823.150.489.750white5.82106156145457
905.80.30.333.50.03325.0116.00.990573.20.4411.760white6.14201901369702
915.80.310.324.50.02428.094.00.989063.250.5213.771white6.40291028133302
925.80.310.331.20.03623.099.00.99163.180.610.560white5.87862546487781
935.80.320.312.70.04925.0153.00.990673.440.7312.271white6.0787945233192
945.80.320.384.750.03323.094.00.9913.420.4211.871white6.11566582951343
955.80.330.216.050.04726.0166.00.99763.090.468.950white5.67739394229451
965.80.330.216.050.04726.0166.00.99763.090.468.950white5.67739394229451
975.80.3450.1510.80.03326.0120.00.994943.250.4910.060white5.82239576043401
985.80.350.293.20.03441.0151.00.99123.350.5811.633333333333371white6.00406324976899
995.80.360.263.30.03840.0153.00.99113.340.5511.360white6.01953875225942
1005.80.360.321.70.03322.096.00.98983.030.3811.260white6.13013566126278
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.