
verticapy.machine_learning.vertica.linear_model.LinearRegression.predict¶
- LinearRegression.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame ¶
Predicts using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
andSELECT 1
are invalid.- X: SQLColumns, optional
list
of the columns used to deploy the models. If empty, the model predictors are used.- name: str, optional
Name of the added :py:class`vDataColumn`. If empty, a name is generated.
- inplace: bool, optional
If set to True, the prediction is added to the :py:class`vDataFrame`.
Returns¶
- vDataFrame
the input object.
Examples¶
We import
verticapy
:import verticapy as vp
For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Divide your dataset into training and testing subsets.
data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Let’s import the model:
from verticapy.machine_learning.vertica import LinearRegression
Then we can create the model:
model = LinearRegression( tol = 1e-6, max_iter = 100, solver = 'newton', fit_intercept = True, )
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err | t_value |p_value ----------------+-----------+--------+---------+-------- Intercept | 150.65060 | 6.80045|22.15304 | 0.00000 fixed_acidity | 0.15444 | 0.01224|12.61914 | 0.00000 volatile_acidity| -0.72957 | 0.08707|-8.37883 | 0.00000 citric_acid | -0.11561 | 0.09365|-1.23442 | 0.21710 residual_sugar | 0.04568 | 0.00384|11.90866 | 0.00000 chlorides | 0.01656 | 0.37319| 0.04437 | 0.96461 density |-146.69104 | 6.91774|-21.20505| 0.00000 ============== regularization ============== type| lambda ----+-------- none| 1.00000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_19f70e7855a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_1a06999c55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5201
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 5.64075404806962 2 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 5.98154436762962 3 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 6.09209150554588 4 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 5.73660392233668 5 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 5.58821192095814 6 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 6.36661240877891 7 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 5.67884670558914 8 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 5.9805333244978 9 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 5.91770005275555 10 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 5.91770005275555 11 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 5.70749406672826 12 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 5.47640596135457 13 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 4.95717058247627 14 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 5.89792237798139 15 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 6.0571130592198 16 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 6.12415264223804 17 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 5.92436848324232 18 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.96410763740067 19 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 6.06336660081595 20 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 5.48259517451544 21 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 5.4784478311565 22 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 6.18791658357154 23 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white 5.88309074349382 24 5.2 0.31 0.36 5.1 0.031 46.0 145.0 0.9897 3.14 0.31 12.4 7 1 white 6.23926067127471 25 5.2 0.32 0.25 1.8 0.103 13.0 50.0 0.9957 3.38 0.55 9.2 5 0 red 5.21499548160043 26 5.2 0.34 0.0 1.8 0.05 27.0 63.0 0.9916 3.68 0.79 14.0 6 0 red 5.82986115737381 27 5.2 0.44 0.04 1.4 0.036 43.0 119.0 0.9894 3.36 0.33 12.1 8 1 white 6.05649827011982 28 5.3 0.275 0.24 7.4 0.038 28.0 114.0 0.99313 3.38 0.51 11.0 6 0 white 5.89613375503379 29 5.3 0.3 0.16 4.2 0.029 37.0 100.0 0.9905 3.3 0.36 11.8 8 1 white 6.12662685572616 30 5.3 0.36 0.27 6.3 0.028 40.0 132.0 0.99186 3.37 0.4 11.6 6 0 white 5.96654047222538 31 5.3 0.47 0.11 2.2 0.048 16.0 89.0 0.99182 3.54 0.88 13.6 7 1 red 5.72371063038895 32 5.3 0.47 0.11 2.2 0.048 16.0 89.0 0.99182 3.54 0.88 13.5666666666667 7 1 red 5.72371063038895 33 5.4 0.15 0.32 2.5 0.037 10.0 51.0 0.98878 3.04 0.58 12.6 6 0 white 6.40780001554148 34 5.4 0.18 0.24 4.8 0.041 30.0 113.0 0.99445 3.42 0.4 9.4 6 0 white 5.66854538004148 35 5.4 0.27 0.22 4.6 0.022 29.0 107.0 0.98889 3.33 0.54 13.8 6 0 white 6.41134885234791 36 5.4 0.31 0.47 3.0 0.053 46.0 144.0 0.9931 3.29 0.76 10.0 5 0 white 5.66312662765705 37 5.4 0.46 0.15 2.1 0.026 29.0 130.0 0.98953 3.39 0.77 13.4 8 1 white 6.07281672147948 38 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 6.19045286149483 39 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 6.19045286149483 40 5.5 0.12 0.33 1.0 0.038 23.0 131.0 0.99164 3.25 0.45 9.8 5 0 white 5.95594060785757 41 5.5 0.14 0.27 4.6 0.029 22.0 104.0 0.9949 3.34 0.44 9.0 5 0 white 5.63435900174403 42 5.5 0.16 0.26 1.5 0.032 35.0 100.0 0.99076 3.43 0.77 12.0 6 0 white 6.08667736167433 43 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.6333333333333 6 0 white 6.20791818474311 44 5.5 0.17 0.23 2.9 0.039 10.0 108.0 0.99243 3.28 0.5 10.0 5 0 white 5.901938779868 45 5.5 0.31 0.29 3.0 0.027 16.0 102.0 0.99067 3.23 0.56 11.2 6 0 white 6.05540845177617 46 5.5 0.32 0.45 4.9 0.028 25.0 191.0 0.9922 3.51 0.49 11.5 7 1 white 5.89198040748605 47 5.5 0.375 0.38 1.7 0.036 17.0 98.0 0.99142 3.29 0.39 10.5 6 0 white 5.82833359389437 48 5.6 0.13 0.27 4.8 0.028 22.0 104.0 0.9948 3.34 0.45 9.2 6 0 white 5.68088663674683 49 5.6 0.19 0.31 2.7 0.027 11.0 100.0 0.98964 3.46 0.4 13.2 7 1 white 6.29347716003886 50 5.6 0.21 0.4 1.3 0.041 81.0 147.0 0.9901 3.22 0.95 11.6 8 1 white 6.1372882958176 51 5.6 0.225 0.24 9.8 0.054 59.0 140.0 0.99545 3.17 0.39 10.2 6 0 white 5.74850967738109 52 5.6 0.25 0.26 3.6 0.037 18.0 115.0 0.9904 3.42 0.5 12.6 6 0 white 6.18527272933898 53 5.6 0.28 0.28 4.2 0.044 52.0 158.0 0.992 3.35 0.44 10.7 7 1 white 5.95388978259845 54 5.6 0.31 0.37 1.4 0.074 12.0 96.0 0.9954 3.32 0.58 9.2 5 0 red 5.29545156316462 55 5.6 0.33 0.28 1.2 0.031 33.0 97.0 0.99126 3.49 0.58 10.9 6 0 white 5.88871829185075 56 5.6 0.34 0.25 2.5 0.046 47.0 182.0 0.99093 3.21 0.4 11.3 5 0 white 5.99292661686434 57 5.6 0.42 0.34 2.4 0.022 34.0 97.0 0.98915 3.22 0.38 12.8 7 1 white 6.18030185245141 58 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 5.35727369895628 59 5.6 0.695 0.06 6.8 0.042 9.0 84.0 0.99432 3.44 0.44 10.2 5 0 white 5.45495584161 60 5.7 0.16 0.26 6.3 0.043 28.0 113.0 0.9936 3.06 0.58 9.9 6 0 white 5.92039218332158 61 5.7 0.21 0.37 4.5 0.04 58.0 140.0 0.99332 3.29 0.62 10.6 6 0 white 5.83000352225247 62 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.59024361501724 63 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.59024361501724 64 5.7 0.22 0.28 1.3 0.027 26.0 101.0 0.98948 3.35 0.38 12.5 7 1 white 6.25002607268718 65 5.7 0.24 0.47 6.3 0.069 35.0 182.0 0.99391 3.11 0.46 9.75 5 0 white 5.79270611468451 66 5.7 0.25 0.32 12.2 0.041 43.0 127.0 0.99524 3.23 0.53 10.4 7 1 white 5.87667953827335 67 5.7 0.26 0.25 10.4 0.02 7.0 57.0 0.994 3.39 0.37 10.6 5 0 white 5.97680781783146 68 5.7 0.265 0.28 6.9 0.036 46.0 150.0 0.99299 3.36 0.44 10.8 7 1 white 5.9582471920119 69 5.7 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 6.30067856773712 70 5.7 0.31 0.29 7.3 0.05 33.0 143.0 0.99332 3.31 0.5 11.0666666666667 6 0 white 5.89435506902933 71 5.7 0.36 0.21 6.7 0.038 51.0 166.0 0.9941 3.29 0.63 10.0 6 0 white 5.72510166516014 72 5.7 0.41 0.21 1.9 0.048 30.0 112.0 0.99138 3.29 0.55 11.2 6 0 white 5.86854171267018 73 5.8 0.15 0.32 1.2 0.037 14.0 119.0 0.99137 3.19 0.5 10.2 6 0 white 6.03026746507192 74 5.8 0.17 0.36 1.3 0.036 11.0 70.0 0.99202 3.43 0.68 10.4 7 1 white 5.92025384515398 75 5.8 0.18 0.37 1.2 0.036 19.0 74.0 0.98853 3.09 0.49 12.7 7 1 white 6.41918620790983 76 5.8 0.19 0.24 1.3 0.044 38.0 128.0 0.99362 3.77 0.6 10.6 5 0 white 5.684962034823 77 5.8 0.19 0.25 10.8 0.042 33.0 124.0 0.99646 3.22 0.41 9.2 6 0 white 5.70109648166246 78 5.8 0.24 0.39 1.5 0.054 37.0 158.0 0.9932 3.21 0.52 9.3 6 0 white 5.70205404864319 79 5.8 0.25 0.28 11.1 0.056 45.0 175.0 0.99755 3.42 0.43 9.5 5 0 white 5.50789593577736 80 5.8 0.26 0.18 1.2 0.031 40.0 114.0 0.9908 3.42 0.4 11.0 7 1 white 6.04971460182421 81 5.8 0.27 0.2 7.3 0.04 42.0 145.0 0.99442 3.15 0.48 9.8 5 0 white 5.78786059903939 82 5.8 0.27 0.22 12.7 0.058 42.0 206.0 0.9946 3.32 0.38 12.3 6 0 white 6.00609494457251 83 5.8 0.27 0.27 12.3 0.045 55.0 170.0 0.9972 3.28 0.42 9.3 6 0 white 5.60043211679925 84 5.8 0.28 0.18 1.2 0.058 7.0 108.0 0.99288 3.23 0.58 9.55 4 0 white 5.73045305663439 85 5.8 0.28 0.27 2.6 0.054 30.0 156.0 0.9914 3.53 0.42 12.4 5 0 white 6.0010320586081 86 5.8 0.28 0.66 9.1 0.039 26.0 159.0 0.9965 3.66 0.55 10.8 5 0 white 5.50447003552625 87 5.8 0.29 0.15 1.1 0.029 12.0 83.0 0.9898 3.3 0.4 11.4 6 0 white 6.17338608431513 88 5.8 0.29 0.38 10.7 0.038 49.0 136.0 0.99366 3.11 0.59 11.2 6 0 white 6.01921224007341 89 5.8 0.3 0.09 6.3 0.042 36.0 138.0 0.99382 3.15 0.48 9.7 5 0 white 5.82106156145457 90 5.8 0.3 0.33 3.5 0.033 25.0 116.0 0.99057 3.2 0.44 11.7 6 0 white 6.14201901369702 91 5.8 0.31 0.32 4.5 0.024 28.0 94.0 0.98906 3.25 0.52 13.7 7 1 white 6.40291028133302 92 5.8 0.31 0.33 1.2 0.036 23.0 99.0 0.9916 3.18 0.6 10.5 6 0 white 5.87862546487781 93 5.8 0.32 0.31 2.7 0.049 25.0 153.0 0.99067 3.44 0.73 12.2 7 1 white 6.0787945233192 94 5.8 0.32 0.38 4.75 0.033 23.0 94.0 0.991 3.42 0.42 11.8 7 1 white 6.11566582951343 95 5.8 0.33 0.2 16.05 0.047 26.0 166.0 0.9976 3.09 0.46 8.9 5 0 white 5.67739394229451 96 5.8 0.33 0.2 16.05 0.047 26.0 166.0 0.9976 3.09 0.46 8.9 5 0 white 5.67739394229451 97 5.8 0.345 0.15 10.8 0.033 26.0 120.0 0.99494 3.25 0.49 10.0 6 0 white 5.82239576043401 98 5.8 0.35 0.29 3.2 0.034 41.0 151.0 0.9912 3.35 0.58 11.6333333333333 7 1 white 6.00406324976899 99 5.8 0.36 0.26 3.3 0.038 40.0 153.0 0.9911 3.34 0.55 11.3 6 0 white 6.01953875225942 100 5.8 0.36 0.32 1.7 0.033 22.0 96.0 0.9898 3.03 0.38 11.2 6 0 white 6.13013566126278 Rows: 1-100 | Columns: 15Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.