Loading...

verticapy.machine_learning.vertica.svm.LinearSVR#

class verticapy.machine_learning.vertica.svm.LinearSVR(name: str = None, overwrite_model: bool = False, tol: float = 0.0001, C: float = 1.0, intercept_scaling: float = 1.0, intercept_mode: Literal['regularized', 'unregularized'] = 'regularized', acceptable_error_margin: float = 0.1, max_iter: int = 100)#

Creates a LinearSVR object using the Vertica SVM (Support Vector Machine) algorithm. This algorithm finds the hyperplane used to approximate distribution of the data.

Parameters#

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

tol: float, optional

Tolerance for stopping criteria. This is used to control accuracy.

C: float, optional

Weight for misclassification cost. The algorithm minimizes the regularization cost and the misclassification cost.

intercept_scaling: float

A float value, serves as the value of a dummy feature whose coefficient Vertica uses to calculate the model intercept. Because the dummy feature is not in the training data, its values are set to a constant, by default set to 1.

intercept_mode: str, optional

Specify how to treat the intercept.

  • regularized:

    Fits the intercept and applies a regularization.

  • unregularized:

    Fits the intercept but does not include it in regularization.

acceptable_error_margin: float, optional

Defines the acceptable error margin. Any data points outside this region add a penalty to the cost function.

max_iter: int, optional

The maximum number of iterations that the algorithm performs.

Attributes#

Many attributes are created during the fitting phase.

coef_: numpy.array

The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.

intercept_: float

The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.

features_importance_: numpy.array

The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization#

First we import the LinearSVR model:

from verticapy.machine_learning.vertica import LinearSVR

Then we can create the model:

model = LinearSVR(
    tol = 1e-4,
    C = 1.0,
    intercept_scaling = 1.0,
    intercept_mode = "regularized",
    acceptable_error_margin = 0.1,
    max_iter = 100,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Features Importance#

We can conveniently get the features importance:

result = model.features_importance()

Note

For LinearModel, feature importance is computed using the coefficients. These coefficients are then normalized using the feature distribution. An activation function is applied to get the final score.

Metrics#

We can get the entire report using:

model.report()
value
explained_variance0.0863628620961687
max_error3.07797651937501
median_absolute_error0.60538844208468
mean_absolute_error0.649312929148977
mean_squared_error0.71257924591219
root_mean_squared_error0.844144090728704
r20.0854064972491805
r2_adj0.0811591590011116
aic-426.021867146756
bic-389.999081631146
Rows: 1-10 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["mse", "r2"]).

For LinearModel, we can easily get the ANOVA table using:

model.report(metrics = "anova")
Df
SS
MS
F
p_value
Regression679.129685156664213.18828085944403318.408075237403561.293431318067137e-20
Residual1292925.6404404399350.7164399693807546
Total12981012.07852193995
Rows: 1-3 | Columns: 6

You can also use the LinearModel.score function to compute the R-squared value:

model.score()
Out[2]: 0.0854064972491805

Prediction#

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white5.8227456291926
24.20.2150.235.10.04164.0157.00.996883.420.448.030white6.07797651937501
34.70.1450.291.00.04235.090.00.99083.760.4911.360white6.22702855153341
44.80.170.282.90.0322.0111.00.99023.380.3411.371white6.15708246539203
54.80.340.06.50.02833.0163.00.99393.360.619.960white5.86427422205307
64.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5.96489134092291
74.90.470.171.90.03560.0148.00.989643.270.3511.560white5.75926538719039
85.00.2350.2711.750.0334.0118.00.99543.070.59.460white5.89461031009198
95.00.240.341.10.03449.0158.00.987743.320.3213.171white6.08246564384141
105.00.270.324.50.03258.0178.00.989563.450.3112.671white5.97755048069678
115.00.330.161.50.04910.097.00.99173.480.4410.760white5.95449356886361
125.00.330.161.50.04910.097.00.99173.480.4410.760white5.95449356886361
135.00.380.011.60.04826.060.00.990843.70.7514.060red5.88309116017209
145.00.440.0418.60.03938.0128.00.99853.370.5710.260white5.47552128263389
155.00.550.148.30.03235.0164.00.99183.530.5112.581white5.52234931552995
165.01.040.241.60.0532.096.00.99343.740.6211.550red4.98111117590475
175.10.260.346.40.03426.099.00.994493.230.419.260white5.96346154903947
185.10.290.288.30.02627.0107.00.993083.360.3711.060white5.88410189217298
195.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white5.98511726539774
205.10.330.221.60.02718.089.00.98933.510.3812.571white5.95709456371273
215.10.330.276.70.02244.0129.00.992213.360.3911.071white5.86274694034537
225.10.470.021.30.03418.044.00.99213.90.6212.860red5.77715196253319
235.20.160.340.80.02926.077.00.991553.250.5110.160white6.20968514421588
245.20.170.270.70.0311.068.00.992183.30.419.850white6.20005911627226
255.20.1850.221.00.0347.0123.00.992183.550.4410.1560white6.17365776921365
265.20.20.273.20.04716.093.00.992353.440.5310.171white6.09511686495437
275.20.240.157.10.04332.0134.00.993783.240.489.960white5.96710826549007
285.20.240.453.80.02721.0128.00.9923.550.4911.281white6.03876522303937
295.20.320.251.80.10313.050.00.99573.380.559.250red5.93131497060275
305.20.3350.21.70.03317.074.00.990023.340.4812.360white5.9440459991813
315.20.340.01.80.0527.063.00.99163.680.7914.060red5.93020575788951
325.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.8017039882449
335.30.330.31.20.04825.0119.00.990453.320.6211.360white5.94887575529202
345.30.3950.071.30.03526.0102.00.9923.50.3510.660white5.87386904796561
355.30.470.112.20.04816.089.00.991823.540.8813.671red5.74190082402203
365.30.570.011.70.0545.027.00.99343.570.8412.571red5.616875485817
375.30.5850.077.10.04434.0145.00.99453.340.579.760white5.49319574968722
385.40.2050.1612.550.05131.0115.00.995643.40.3810.860white5.89657729959557
395.40.220.356.50.02926.087.00.990923.290.4412.571white6.00097707811468
405.40.2650.287.80.05227.091.00.994323.190.3810.460white5.90747845141053
415.40.580.081.90.05920.031.00.994843.50.6410.260red5.59702278950873
425.40.590.077.00.04536.0147.00.99443.340.579.760white5.48499687090459
435.40.8350.081.20.04613.093.00.99243.570.8513.071red5.26262128243793
445.50.160.261.50.03235.0100.00.990763.430.7712.060white6.18394551436899
455.50.160.311.20.02631.068.00.98983.330.4411.6560white6.19084665512919
465.50.170.232.90.03910.0108.00.992433.280.510.050white6.14167607900047
475.50.230.192.20.04439.0161.00.992093.190.4310.460white6.06969094595297
485.50.280.211.60.03223.085.00.990273.420.4212.550white6.01590992808277
495.50.350.351.10.04514.0167.00.9923.340.689.960white5.92533553002192
505.50.620.331.70.03724.0118.00.987583.150.3913.5560white5.53338383014825
515.60.120.332.90.04421.073.00.988963.170.3212.981white6.19224942564688
525.60.1750.290.80.04320.067.00.991123.280.489.960white6.16875083980032
535.60.180.311.50.03816.084.00.99243.340.5810.160white6.15468342525807
545.60.180.581.250.03429.0129.00.989843.510.612.071white6.15181858331571
555.60.190.461.10.03233.0115.00.99093.360.510.460white6.14722280404281
565.60.2050.1612.550.05131.0115.00.995643.40.3810.860white5.89177976800301
575.60.2250.249.80.05459.0140.00.995453.170.3910.260white5.91839125588601
585.60.230.293.10.02319.089.00.990683.250.5111.260white6.05765417888893
595.60.240.342.00.04114.073.00.989813.040.4511.671white6.05101325458862
605.60.2450.259.70.03212.068.00.9943.310.3410.550white5.90366556471516
615.60.250.263.60.03718.0115.00.99043.420.512.660white6.00926815261715
625.60.260.265.70.03112.080.00.99233.250.3810.850white5.96192025403062
635.60.320.328.30.04332.0105.00.992663.240.4711.260white5.81721593455414
645.60.330.281.20.03133.097.00.991263.490.5810.960white5.95642922848912
655.60.340.36.90.03823.089.00.992663.250.4911.160white5.82276155712466
665.60.350.145.00.04648.0198.00.99373.30.7110.350white5.84811323374794
675.60.420.342.40.02234.097.00.989153.220.3812.871white5.80657737072334
685.60.6950.066.80.0429.084.00.994323.440.4410.250white5.34209517510352
695.70.220.216.00.04441.0113.00.998623.220.468.960white5.81070564302012
705.70.220.2216.650.04439.0110.00.998553.240.489.060white5.79667433464117
715.70.220.2216.650.04439.0110.00.998553.240.489.060white5.79667433464117
725.70.220.281.30.02726.0101.00.989483.350.3812.571white6.10008819295262
735.70.230.257.950.04216.0108.00.994863.440.6110.360white5.95427905302043
745.70.2450.331.10.04928.0150.00.99273.130.429.350white6.06442599579731
755.70.250.211.50.04421.0108.00.991423.30.5911.060white6.04971464118668
765.70.250.2612.50.04952.5120.00.996913.080.459.460white5.83315557459924
775.70.250.2711.50.0424.0120.00.994113.330.3110.860white5.85125353755931
785.70.260.2417.80.05923.0124.00.997733.30.510.150white5.7042689283341
795.70.260.2417.80.05923.0124.00.997733.30.510.150white5.7042689283341
805.70.260.274.10.20173.5189.50.99423.270.389.460white5.87973671741544
815.70.270.169.00.05332.0111.00.994743.360.3710.460white5.87010942952445
825.70.280.2417.50.04460.0167.00.99893.310.449.450white5.69739380669265
835.70.3850.0412.60.03422.0115.00.99643.280.639.960white5.6566311113229
845.70.430.35.70.03924.098.00.9923.540.6112.371white5.71902077619639
855.70.450.421.10.05161.0197.00.99323.020.49.050white5.78216212432397
865.80.120.211.30.05635.0121.00.99083.320.3311.460white6.21965128878354
875.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.98124104233936
885.80.150.315.90.0367.073.00.991523.20.4311.960white6.09751942229094
895.80.220.290.90.03434.089.00.989363.140.3611.171white6.10066563875357
905.80.220.31.10.04736.0131.00.9923.260.4510.450white6.0957990044724
915.80.230.271.80.04324.069.00.99333.380.319.460white6.07471153159486
925.80.230.314.50.04642.0124.00.993243.310.6410.860white6.01548688482738
935.80.240.2610.050.03963.0162.00.993753.330.511.260white5.89258745380959
945.80.250.2811.10.05645.0175.00.997553.420.439.550white5.85703488028046
955.80.260.181.20.03140.0114.00.99083.420.411.071white6.04727159221039
965.80.260.181.20.03140.0114.00.99083.420.411.071white6.04727159221039
975.80.260.32.60.03475.0129.00.99023.20.3811.540white6.01274330862531
985.80.270.2712.30.04555.0170.00.99723.280.429.360white5.81112054983398
995.80.280.33.90.02636.0105.00.989633.260.5812.7560white5.9618199100258
1005.80.280.344.00.03140.099.00.98963.390.3912.871white5.95573041556977
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Plots#

If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.

model.plot()

Important

The plotting feature is typically suitable for models with fewer than three predictors.

Contour plot is another useful plot that can be produced for models with two predictors.

model.contour()

Important

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[3]: 
{'tol': 0.0001,
 'C': 1.0,
 'intercept_scaling': 1.0,
 'intercept_mode': 'regularized',
 'acceptable_error_margin': 0.1,
 'max_iter': 100}

And to manually change some of the parameters:

model.set_params({'tol': 0.001})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The following methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL code by:

model.to_sql()
Out[5]: '3.3854846865711 + -0.0239876579627851 * "fixed_acidity" + -1.3736782113893 * "volatile_acidity" + -0.00971203405847271 * "citric_acid" + -0.020939251969 * "residual_sugar" + -0.7019986721078 * "chlorides" + 3.23648454189879 * "density"'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[7]: array([6.19346233])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, tol: float = 0.0001, C: float = 1.0, intercept_scaling: float = 1.0, intercept_mode: Literal['regularized', 'unregularized'] = 'regularized', acceptable_error_margin: float = 0.1, max_iter: int = 100) None#

Methods

__init__([name, overwrite_model, tol, C, ...])

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

predict(vdf[, X, name, inplace])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

regression_report([metrics])

Computes a regression report

report([metrics])

Computes a regression report

score([metric])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes