Loading...

verticapy.machine_learning.vertica.svm.LinearSVR

class verticapy.machine_learning.vertica.svm.LinearSVR(name: str = None, overwrite_model: bool = False, tol: float = 0.0001, C: float = 1.0, intercept_scaling: float = 1.0, intercept_mode: Literal['regularized', 'unregularized'] = 'regularized', acceptable_error_margin: float = 0.1, max_iter: int = 100)

Creates a LinearSVR object using the Vertica SVM (Support Vector Machine) algorithm. This algorithm finds the hyperplane used to approximate distribution of the data.

Parameters

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

tol: float, optional

Tolerance for stopping criteria. This is used to control accuracy.

C: float, optional

Weight for misclassification cost. The algorithm minimizes the regularization cost and the misclassification cost.

intercept_scaling: float

A float value, serves as the value of a dummy feature whose coefficient Vertica uses to calculate the model intercept. Because the dummy feature is not in the training data, its values are set to a constant, by default set to 1.

intercept_mode: str, optional

Specify how to treat the intercept.

  • regularized:

    Fits the intercept and applies a regularization.

  • unregularized:

    Fits the intercept but does not include it in regularization.

acceptable_error_margin: float, optional

Defines the acceptable error margin. Any data points outside this region add a penalty to the cost function.

max_iter: int, optional

The maximum number of iterations that the algorithm performs.

Attributes

Many attributes are created during the fitting phase.

coef_: numpy.array

The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.

intercept_: float

The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.

features_importance_: numpy.array

The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization

First we import the LinearSVR model:

from verticapy.machine_learning.vertica import LinearSVR

Then we can create the model:

model = LinearSVR(
    tol = 1e-4,
    C = 1.0,
    intercept_scaling = 1.0,
    intercept_mode = "regularized",
    acceptable_error_margin = 0.1,
    max_iter = 100,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient
----------------+-----------
   Intercept    |  3.33836  
 fixed_acidity  | -0.00627  
volatile_acidity| -1.39647  
  citric_acid   | -0.04746  
 residual_sugar | -0.02000  
   chlorides    | -0.75937  
    density     |  3.18272  


===========
call_string
===========
SELECT svm_regressor('"public"."_verticapy_tmp_linearsvr_v_demo_efea8d4855a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_eff817ce55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS error_tolerance=0.1, C=1, max_iterations=100, intercept_mode='regularized', intercept_scaling=1, epsilon=0.0001);

===============
Additional Info
===============
       Name       |Value
------------------+-----
accepted_row_count|5197 
rejected_row_count|  0  
 iteration_count  |  7  

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Features Importance

We can conveniently get the features importance:

result = model.features_importance()

Note

For LinearModel, feature importance is computed using the coefficients. These coefficients are then normalized using the feature distribution. An activation function is applied to get the final score.

Metrics

We can get the entire report using:

model.report()
value
explained_variance0.0930381379144025
max_error3.00895862059503
median_absolute_error0.559560190859324
mean_absolute_error0.633405217886435
mean_squared_error0.694760165402962
root_mean_squared_error0.833522744382517
r20.0926372182085375
r2_adj0.0884267180610134
aic-459.282613641858
bic-423.254315537401
Rows: 1-10 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["mse", "r2"]).

For LinearModel, we can easily get the ANOVA table using:

model.report(metrics = "anova")
Df
SS
MS
F
p_value
Regression671.969804461897411.99496741031623317.171938919873223.505605540441714e-19
Residual1293903.1882150238510.6985214346665514
Total1299995.399230769231
Rows: 1-3 | Columns: 6

You can also use the LinearModel.score function to compute the R-squared value:

model.score()
Out[2]: 0.0926372182085377

Prediction

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.20.170.361.80.02993.0161.00.989993.650.8912.071white6.15037649814531
24.50.190.210.950.03389.0159.00.993323.340.428.050white6.15224237407368
34.80.290.231.10.04438.0180.00.989243.280.3411.960white5.98542637362549
44.80.340.06.50.02833.0163.00.99393.360.619.960white5.84552043718996
55.00.350.257.80.03124.0116.00.992413.390.411.360white5.7854198566214
65.00.380.011.60.04826.060.00.990843.70.7514.060red5.86098808199817
75.00.420.242.00.0619.050.00.99173.720.7414.081red5.77983922478535
85.00.610.121.30.00965.0100.00.98743.260.3713.550white5.55924563655952
95.01.020.041.40.04541.085.00.99383.750.4810.540red4.98152369106327
105.01.040.241.60.0532.096.00.99343.740.6211.550red4.93503267326862
115.10.1650.225.70.04742.0146.00.99343.180.559.960white6.07755607381282
125.10.260.346.40.03426.099.00.994493.230.419.260white5.93853977410454
135.10.330.221.60.02718.089.00.98933.510.3812.571white5.93126236843472
145.10.350.266.80.03436.0120.00.991883.380.411.560white5.80034929552591
155.10.510.182.10.04216.0101.00.99243.460.8712.971red5.67027454223647
165.20.1550.331.60.02813.059.00.989753.30.8411.981white6.1704687149577
175.20.1550.331.60.02813.059.00.989753.30.8411.981white6.1704687149577
185.20.20.273.20.04716.093.00.992353.440.5310.171white6.07232831647228
195.20.240.453.80.02721.0128.00.9923.550.4911.281white6.01000205774974
205.20.250.231.40.04720.077.00.990013.320.6211.450white6.03294934639537
215.20.280.291.10.02818.069.00.991683.240.5410.060white6.01394969264853
225.20.30.341.50.03818.096.00.989423.560.4813.081white5.96086203733818
235.20.340.376.20.03142.0133.00.990763.250.4112.560white5.81917703887501
245.20.50.182.00.03623.0129.00.989493.360.7713.471white5.68090599889567
255.20.6450.02.150.0815.028.00.994443.780.6112.560red5.46630426586991
265.30.160.391.00.02840.0101.00.991563.570.5910.660white6.17776984159764
275.30.20.313.60.03622.091.00.992783.410.59.860white6.07152557794754
285.30.2750.247.40.03828.0114.00.993133.380.5111.060white5.89372197138889
295.30.30.21.10.07748.0166.00.99443.30.548.740white5.96111248660795
305.30.30.31.20.02925.093.00.987423.310.413.671white5.96860098072255
315.30.320.239.650.02626.0119.00.991683.180.5312.260white5.79086127024622
325.30.3950.071.30.03526.0102.00.9923.50.3510.660white5.8548739866318
335.30.470.112.20.04816.089.00.991823.540.8813.671red5.71979905282808
345.30.570.011.70.0545.027.00.99343.570.8412.571red5.59536926677149
355.40.170.272.70.04928.0104.00.992243.460.5510.360white6.12109697251029
365.40.230.361.50.0374.0121.00.989763.240.9912.171white6.06356786705338
375.40.290.473.00.05247.0145.00.9933.290.7510.060white5.93817033622146
385.40.450.276.40.03320.0102.00.989443.220.2713.481white5.65933802653297
395.40.530.162.70.03634.0128.00.988563.20.5313.281white5.62174916688011
405.50.140.274.60.02922.0104.00.99493.340.449.050white6.14802399626162
415.50.140.274.60.02922.0104.00.99493.340.449.050white6.14802399626162
425.50.180.225.50.03710.086.00.991563.460.4412.250white6.059836457712
435.50.280.211.60.03223.085.00.990273.420.4212.550white5.99834134523132
445.50.3350.32.50.07127.0128.00.99243.140.519.660white5.87643109441375
455.50.340.262.20.02131.0119.00.989193.550.4913.081white5.90509813417776
465.60.130.274.80.02822.0104.00.99483.340.459.260white6.15780314574585
475.60.150.265.550.05151.0139.00.993363.470.511.060white6.09330252420676
485.60.1750.290.80.04320.067.00.991123.280.489.960white6.15089536000729
495.60.180.292.30.045.047.00.991263.070.4510.140white6.11664217654382
505.60.180.310.20.02828.0131.00.99543.490.4210.871white5.98048521925106
515.60.180.581.250.03429.0129.00.989843.510.612.071white6.12391103075642
525.60.190.270.90.0452.0103.00.990263.50.3911.250white6.12843893724582
535.60.190.312.70.02711.0100.00.989643.460.413.271white6.09844551891228
545.60.190.391.10.04317.067.00.99183.230.5310.360white6.12136746700856
555.60.20.221.30.04925.0155.00.992963.740.4310.050white6.11060786224903
565.60.230.258.00.04331.0101.00.994293.190.4210.460white5.94210361254704
575.60.260.265.70.03112.080.00.99233.250.3810.850white5.94850543865597
585.60.280.273.90.04352.0158.00.992023.350.4410.771white5.94609132276543
595.60.340.252.50.04647.0182.00.990933.210.411.350white5.88550018656167
605.60.350.145.00.04648.0198.00.99373.30.7110.350white5.83558161718611
615.60.390.244.70.03427.077.00.99063.280.3612.750white5.78022161946794
625.60.460.244.80.04224.072.00.99083.290.3712.660white5.67503088846106
635.60.50.092.30.04917.099.00.99373.630.6313.050red5.68019677513631
645.60.50.092.30.04917.099.00.99373.630.6313.050red5.68019677513631
655.60.6150.01.60.08916.059.00.99433.580.529.950red5.50940697741581
665.60.850.051.40.04512.088.00.99243.560.8212.981red5.21022854759132
675.70.10.271.30.04721.0100.00.99283.270.469.550white6.24826358745066
685.70.160.266.30.04328.0113.00.99363.060.589.960white6.07055205660226
695.70.220.216.00.04441.0113.00.998623.220.468.960white5.81086498731988
705.70.220.216.00.04441.0113.00.998623.220.468.960white5.81086498731988
715.70.220.216.00.04441.0113.00.998623.220.468.960white5.81086498731988
725.70.220.251.10.0597.0175.00.990993.440.6211.160white6.07759724812493
735.70.220.281.30.02726.0101.00.989483.350.3812.571white6.08483370975602
745.70.250.229.80.04950.0125.00.995713.20.4510.160white5.87894059767869
755.70.260.274.10.20173.5189.50.99423.270.389.460white5.85635187609888
765.70.310.297.30.0533.0143.00.993323.310.511.066666666666760white5.83345504795619
775.70.320.52.60.04917.0155.00.99273.220.6410.060white5.90229226617571
785.70.370.31.10.02924.088.00.988833.180.3911.760white5.87482620143893
795.70.450.421.10.05161.0197.00.99323.020.49.050white5.75461572956588
805.71.130.091.50.1727.019.00.9943.50.489.840red4.72334469635034
815.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.98071539276373
825.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.98071539276373
835.80.150.315.90.0367.073.00.991523.20.4311.960white6.08821033503654
845.80.170.341.80.04596.0170.00.990353.380.911.881white6.13028408959425
855.80.180.281.30.0349.094.00.990923.210.5211.260white6.13933256772528
865.80.20.161.40.04244.099.00.989123.230.3712.260white6.10329521221097
875.80.230.211.50.04421.0110.00.991383.30.5711.060white6.06270266851031
885.80.240.2610.050.03963.0162.00.993753.330.511.260white5.88673590252837
895.80.260.181.20.03140.0114.00.99083.420.411.071white6.03625727652373
905.80.270.263.50.07126.069.00.989943.10.3811.560white5.93939203772056
915.80.280.344.00.03140.099.00.98963.390.3912.871white5.94092488664849
925.80.280.669.10.03926.0159.00.99653.660.5510.850white5.83964132470247
935.80.290.050.80.03811.030.00.99243.360.359.250white6.00830868622429
945.80.290.212.60.02512.0120.00.98943.390.7914.071white5.96504490531856
955.80.290.261.70.0633.011.00.99153.390.5413.560red5.95849616160281
965.80.290.333.70.02930.088.00.989943.250.4212.360white5.93603461663623
975.80.30.333.50.03325.0116.00.990573.20.4411.760white5.92503685521875
985.80.310.317.50.05255.0230.00.99493.190.469.850white5.83138914671991
995.80.310.324.50.02428.094.00.989063.250.5213.771white5.89357886975542
1005.80.310.331.20.03623.099.00.99163.180.610.560white5.95806391142243
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Plots

If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.

model.plot()

Important

The plotting feature is typically suitable for models with fewer than three predictors.

Contour plot is another useful plot that can be produced for models with two predictors.

model.contour()

Important

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.

Parameter Modification

In order to see the parameters:

model.get_params()
Out[3]: 
{'tol': 0.0001,
 'C': 1.0,
 'intercept_scaling': 1.0,
 'intercept_mode': 'regularized',
 'acceptable_error_margin': 0.1,
 'max_iter': 100}

And to manually change some of the parameters:

model.set_params({'tol': 0.001})

Model Register

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The following methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL code by:

model.to_sql()
Out[5]: '3.33836171310431 + -0.00627344463542344 * "fixed_acidity" + -1.39646681976227 * "volatile_acidity" + -0.0474623425893748 * "citric_acid" + -0.0199963609649769 * "residual_sugar" + -0.75937027345625 * "chlorides" + 3.18272330313309 * "density"'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[7]: array([6.15009005])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, tol: float = 0.0001, C: float = 1.0, intercept_scaling: float = 1.0, intercept_mode: Literal['regularized', 'unregularized'] = 'regularized', acceptable_error_margin: float = 0.1, max_iter: int = 100) None

Methods

__init__([name, overwrite_model, tol, C, ...])

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

predict(vdf[, X, name, inplace])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

regression_report([metrics])

Computes a regression report

report([metrics])

Computes a regression report

score([metric])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes