Loading...

verticapy.machine_learning.vertica.neighbors.KNeighborsRegressor.predict

KNeighborsRegressor.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 147.71341 | 6.77651|21.79785 | 0.00000
 fixed_acidity  |  0.13932  | 0.01221|11.41416 | 0.00000
volatile_acidity| -0.71341  | 0.08807|-8.10003 | 0.00000
  citric_acid   | -0.11370  | 0.09441|-1.20437 | 0.22850
 residual_sugar |  0.04377  | 0.00384|11.39279 | 0.00000
   chlorides    |  0.02211  | 0.38675| 0.05716 | 0.95442
    density     |-143.62733 | 6.89324|-20.83597| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_6e0ff97055a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_6e21b20a55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5196 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.90.2250.44.20.0329.0118.00.9893.570.3612.881white6.18783921962304
24.20.170.361.80.02993.0161.00.989993.650.8912.071white6.02614846842803
34.60.4450.01.40.05311.0178.00.994263.790.5510.250white5.29635431001174
44.70.1450.291.00.04235.090.00.99083.760.4911.360white5.9705316171611
54.80.210.2110.20.03717.0112.00.993243.660.4812.271white5.99935129557406
64.80.290.231.10.04438.0180.00.989243.280.3411.960white6.11632189154167
74.80.340.06.50.02833.0163.00.99393.360.619.960white5.67352807838597
84.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5.7033150420707
95.00.170.561.50.02624.0115.00.99063.480.3910.871white6.01405051322405
105.00.240.341.10.03449.0158.00.987743.320.3213.171white6.38256824332836
115.00.2550.222.70.04346.0153.00.992383.750.7611.360white5.78931882522687
125.00.270.324.50.03258.0178.00.989563.450.3112.671white6.25082703132111
135.00.330.184.60.03240.0124.00.991143.180.411.060white6.0013874671132
145.00.440.0418.60.03938.0128.00.99853.370.5710.260white5.49473013738952
155.00.740.01.20.04116.046.00.992584.010.5912.560red5.37390002312173
165.10.1650.225.70.04742.0146.00.99343.180.559.960white5.85236893686752
175.10.210.281.40.04748.0148.00.991683.50.4910.450white5.87225254302626
185.10.260.331.10.02746.0113.00.989463.350.4311.471white6.13617515925469
195.10.310.30.90.03728.0152.00.9923.540.5610.160white5.73056871702937
205.10.420.01.80.04418.088.00.991573.680.7313.671red5.7875166769112
215.10.5850.01.70.04414.086.00.992643.560.9412.971red5.51174579897108
225.20.170.270.70.0311.068.00.992183.30.419.850white5.81302609449432
235.20.2850.295.150.03564.0138.00.98953.190.3412.481white6.30853791777884
245.20.30.341.50.03818.096.00.989423.560.4813.081white6.14393163363906
255.20.360.021.60.03124.0104.00.98963.440.3512.260white6.11588236319358
265.20.370.331.20.02813.081.00.99023.370.3811.760white5.96974746071982
275.20.490.262.30.0923.074.00.99533.710.6212.260red5.2091210234554
285.30.260.235.150.03448.0160.00.99523.820.5110.571white5.52842925893731
295.30.2750.247.40.03828.0114.00.993133.380.5111.060white5.91248045063082
305.30.360.276.30.02840.0132.00.991863.370.411.660white5.98246351797141
315.30.5850.077.10.04434.0145.00.99453.340.579.760white5.50088483872946
325.40.150.322.50.03710.051.00.988783.040.5812.660white6.41675412487214
335.40.2050.1612.550.05131.0115.00.995643.40.3810.860white5.85066792402048
345.40.220.356.50.02926.087.00.990923.290.4412.571white6.23096263474474
355.40.2650.287.80.05227.091.00.994323.190.3810.460white5.77590086618125
365.40.30.31.20.02925.093.00.987423.310.413.671white6.4502667398167
375.40.310.473.00.05346.0144.00.99313.290.7610.050white5.68732415885253
385.40.330.314.00.0327.0108.00.990313.30.4312.271white6.13523485376803
395.40.530.162.70.03634.0128.00.988563.20.5313.281white6.20418284486354
405.40.580.081.90.05920.031.00.994843.50.6410.260red5.24111819092408
415.40.5950.12.80.04226.080.00.99323.360.389.350white5.50271291522262
425.50.140.274.60.02922.0104.00.99493.340.449.050white5.6562552654803
435.50.160.261.50.03235.0100.00.990763.430.7712.060white6.1021070687728
445.50.170.232.90.03910.0108.00.992433.280.510.050white5.91996536819144
455.50.340.262.20.02131.0119.00.989193.550.4913.081white6.22958754185285
465.60.120.264.30.03818.097.00.994773.360.469.250white5.69133044513688
475.60.150.265.550.05151.0139.00.993363.470.511.060white5.92744813194665
485.60.160.271.40.04453.0168.00.99183.280.3710.160white5.96141723947292
495.60.180.311.50.03816.084.00.99243.340.5810.160white5.86066931129014
505.60.180.581.250.03429.0129.00.989843.510.612.071white6.18662306397829
515.60.1850.197.10.04836.0110.00.994383.260.419.560white5.83172226547288
525.60.210.41.30.04181.0147.00.99013.220.9511.681white6.15068800398998
535.60.2450.321.10.04724.0152.00.99273.120.429.360white5.75276181841366
545.60.250.192.40.04942.0166.00.9923.250.4310.460white5.92146638460008
555.60.260.2710.60.0327.0119.00.99473.40.3410.771white5.87597199160186
565.60.290.050.80.03811.030.00.99243.360.359.250white5.781115589959
575.60.2950.261.10.03540.0102.00.991543.470.5610.660white5.89025612421935
585.60.310.371.40.07412.096.00.99543.320.589.250red5.32664056614988
595.60.340.36.90.03823.089.00.992663.250.4911.160white5.94669970836506
605.60.350.145.00.04648.0198.00.99373.30.7110.350white5.72539146764802
615.60.390.244.70.03427.077.00.99063.280.3612.750white6.11733185024565
625.60.490.134.50.03917.0116.00.99073.420.913.771white6.03549153798326
635.60.50.092.30.04917.099.00.99373.630.6313.050red5.50594111039339
645.60.540.041.70.0495.013.00.99423.720.5811.450red5.38501175002949
655.60.660.02.20.0873.011.00.993783.710.6312.871red5.38700182083613
665.60.660.02.20.0873.011.00.993783.710.6312.871red5.38700182083613
675.70.10.271.30.04721.0100.00.99283.270.469.550white5.87021501152893
685.70.120.265.50.03421.099.00.993243.090.579.960white5.97745285405568
695.70.140.35.40.04526.0105.00.994693.320.459.350white5.74624265665966
705.70.150.283.70.04557.0151.00.99133.220.2711.260white6.15386287999806
715.70.210.251.10.03526.081.00.99023.310.5211.460white6.15842518468114
725.70.220.2216.650.04439.0110.00.998553.240.489.060white5.63630453975361
735.70.220.331.90.03637.0110.00.989453.260.5812.460white6.28495686528328
745.70.2450.331.10.04928.0150.00.99273.130.429.350white5.76560076900233
755.70.250.2711.50.0424.0120.00.994113.330.3110.860white6.02139598309486
765.70.2550.651.20.07917.0137.00.993073.20.429.450white5.67397985772408
775.70.260.2417.80.05923.0124.00.997733.30.510.150white5.77394072072059
785.70.280.2417.50.04460.0167.00.99893.310.449.450white5.57816466924348
795.70.280.282.20.01915.065.00.99023.060.5211.260white6.15287362916507
805.70.280.33.90.02636.0105.00.989633.260.5812.7560white6.30703831080413
815.70.290.167.90.04448.0197.00.995123.210.369.450white5.70280425703544
825.70.320.384.750.03323.094.00.9913.420.4211.871white6.1099992028324
835.70.3850.0412.60.03422.0115.00.99643.280.639.960white5.67035059172102
845.80.140.156.10.04227.0123.00.993623.060.69.960white5.96148707272474
855.80.180.281.30.0349.094.00.990923.210.5211.260white6.09566913982678
865.80.20.241.40.03365.0169.00.990433.590.5612.371white6.1606818904684
875.80.220.31.10.04736.0131.00.9923.260.4510.450white5.90127377492797
885.80.230.271.80.04324.069.00.99333.380.319.460white5.74138893657755
895.80.230.314.50.04642.0124.00.993243.310.6410.860white5.86371553534676
905.80.240.443.50.0295.0109.00.99133.530.4311.730white6.07628670125021
915.80.250.2413.30.04441.0137.00.99723.340.429.550white5.67381275268693
925.80.260.181.20.03140.0114.00.99083.420.411.071white6.06275851520331
935.80.280.272.60.05430.0156.00.99143.530.4212.450white6.01387318487315
945.80.290.271.60.06217.0140.00.991383.230.3511.160white5.96601414810209
955.80.310.324.50.02428.094.00.989063.250.5213.771white6.40538176979138
965.80.320.284.30.03246.0115.00.989463.160.5713.081white6.33676692970809
975.80.330.216.050.04726.0166.00.99763.090.468.950white5.68428326844446
985.80.540.01.40.03340.0107.00.989183.260.3512.450white6.12494663350725
995.80.610.111.80.06618.028.00.994833.550.6610.960red5.26924554708211
1005.90.180.281.00.03724.088.00.990943.290.5510.6571white6.09366238334232
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.