
verticapy.machine_learning.vertica.linear_model.ElasticNet.predict¶
- ElasticNet.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame ¶
Predicts using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
andSELECT 1
are invalid.- X: SQLColumns, optional
list
of the columns used to deploy the models. If empty, the model predictors are used.- name: str, optional
Name of the added :py:class`vDataColumn`. If empty, a name is generated.
- inplace: bool, optional
If set to True, the prediction is added to the :py:class`vDataFrame`.
Returns¶
- vDataFrame
the input object.
Examples¶
We import
verticapy
:import verticapy as vp
For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Divide your dataset into training and testing subsets.
data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Let’s import the model:
from verticapy.machine_learning.vertica import LinearRegression
Then we can create the model:
model = LinearRegression( tol = 1e-6, max_iter = 100, solver = 'newton', fit_intercept = True, )
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err | t_value |p_value ----------------+-----------+--------+---------+-------- Intercept | 146.17447 | 6.81095|21.46169 | 0.00000 fixed_acidity | 0.15109 | 0.01234|12.24616 | 0.00000 volatile_acidity| -0.71695 | 0.08646|-8.29271 | 0.00000 citric_acid | -0.16916 | 0.09338|-1.81157 | 0.07011 residual_sugar | 0.04431 | 0.00384|11.53629 | 0.00000 chlorides | -0.17881 | 0.38889|-0.45979 | 0.64569 density |-142.13186 | 6.92812|-20.51522| 0.00000 ============== regularization ============== type| lambda ----+-------- none| 1.00000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_08b439ba55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_08c4b38055a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5187
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 5.53641820851246 2 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 5.35185619977435 3 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 5.98792740536351 4 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 6.03802278933713 5 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 5.39962800687937 6 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 5.69026855787098 7 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 5.96765673672377 8 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 6.22789491663008 9 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 6.29183793965646 10 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 5.77181224715173 11 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 5.9237050278694 12 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 6.00191255571997 13 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 6.18728906958026 14 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 5.83990355011625 15 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 6.12625309379993 16 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 6.12625309379993 17 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 5.9310650850374 18 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.96760643369586 19 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.96760643369586 20 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 6.07514529481429 21 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 5.58283194830511 22 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 5.50731613361449 23 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 6.18408341737782 24 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 5.88734310810494 25 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 5.80885856773591 26 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 5.82182131113112 27 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white 5.88070673686272 28 5.2 0.38 0.26 7.7 0.053 20.0 103.0 0.9925 3.27 0.45 12.2 6 0 white 5.90956681304706 29 5.2 0.405 0.15 1.45 0.038 10.0 44.0 0.99125 3.52 0.4 11.6 4 0 white 5.81366164545443 30 5.2 0.44 0.04 1.4 0.036 43.0 119.0 0.9894 3.36 0.33 12.1 8 1 white 6.06826196379296 31 5.2 0.49 0.26 2.3 0.09 23.0 74.0 0.9953 3.71 0.62 12.2 6 0 red 5.18684433404746 32 5.3 0.275 0.24 7.4 0.038 28.0 114.0 0.99313 3.38 0.51 11.0 6 0 white 5.90318548136128 33 5.3 0.31 0.38 10.5 0.031 53.0 140.0 0.99321 3.34 0.46 11.7 6 0 white 5.98165099069439 34 5.3 0.395 0.07 1.3 0.035 26.0 102.0 0.992 3.5 0.35 10.6 6 0 white 5.73676433478283 35 5.3 0.57 0.01 1.7 0.054 5.0 27.0 0.9934 3.57 0.84 12.5 7 1 red 5.43678911643812 36 5.4 0.17 0.27 2.7 0.049 28.0 104.0 0.99224 3.46 0.55 10.3 6 0 white 5.90477474506872 37 5.4 0.18 0.24 4.8 0.041 30.0 113.0 0.99445 3.42 0.4 9.4 6 0 white 5.68304951687119 38 5.4 0.185 0.19 7.1 0.048 36.0 110.0 0.99438 3.26 0.41 9.5 6 0 white 5.79853274471452 39 5.4 0.45 0.27 6.4 0.033 20.0 102.0 0.98944 3.22 0.27 13.4 8 1 white 6.26880400607288 40 5.4 0.5 0.13 5.0 0.028 12.0 107.0 0.99079 3.48 0.88 13.5 7 1 white 6.00362115734544 41 5.4 0.59 0.07 7.0 0.045 36.0 147.0 0.9944 3.34 0.57 9.7 6 0 white 5.52172874684516 42 5.4 0.74 0.09 1.7 0.089 16.0 26.0 0.99402 3.67 0.56 11.6 6 0 red 5.22210357604655 43 5.4 0.835 0.08 1.2 0.046 13.0 93.0 0.9924 3.57 0.85 13.0 7 1 red 5.37147204424559 44 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.65 6 0 white 6.20473682322262 45 5.5 0.49 0.03 1.8 0.044 28.0 87.0 0.9908 3.5 0.82 14.0 8 1 red 5.89674259642385 46 5.6 0.175 0.29 0.8 0.043 20.0 67.0 0.99112 3.28 0.48 9.9 6 0 white 6.00409735336737 47 5.6 0.19 0.46 1.1 0.032 33.0 115.0 0.9909 3.36 0.5 10.4 6 0 white 6.01111463315215 48 5.6 0.205 0.16 12.55 0.051 31.0 115.0 0.99564 3.4 0.38 10.8 6 0 white 5.88135257048899 49 5.6 0.21 0.4 1.3 0.041 81.0 147.0 0.9901 3.22 0.95 11.6 8 1 white 6.12788335527642 50 5.6 0.225 0.24 9.8 0.054 59.0 140.0 0.99545 3.17 0.39 10.2 6 0 white 5.7580975458456 51 5.6 0.23 0.25 8.0 0.043 31.0 101.0 0.99429 3.19 0.42 10.4 6 0 white 5.83990347279618 52 5.6 0.23 0.29 3.1 0.023 19.0 89.0 0.99068 3.25 0.51 11.2 6 0 white 6.13269147738774 53 5.6 0.245 0.32 1.1 0.047 24.0 152.0 0.9927 3.12 0.42 9.3 6 0 white 5.73684519005928 54 5.6 0.28 0.27 3.9 0.043 52.0 158.0 0.99202 3.35 0.44 10.7 7 1 white 5.94164199719771 55 5.6 0.32 0.33 7.4 0.037 25.0 95.0 0.99268 3.25 0.49 11.1 6 0 white 5.96516416416083 56 5.6 0.39 0.24 4.7 0.034 27.0 77.0 0.9906 3.28 0.36 12.7 5 0 white 6.10673624316718 57 5.6 0.5 0.09 2.3 0.049 17.0 99.0 0.9937 3.63 0.63 13.0 5 0 red 5.50361118827726 58 5.7 0.1 0.27 1.3 0.047 21.0 100.0 0.9928 3.27 0.46 9.5 5 0 white 5.85901944667413 59 5.7 0.15 0.28 3.7 0.045 57.0 151.0 0.9913 3.22 0.27 11.2 6 0 white 6.14137896279337 60 5.7 0.18 0.22 4.2 0.042 25.0 111.0 0.994 3.35 0.39 9.4 5 0 white 5.76895525014555 61 5.7 0.21 0.24 2.3 0.047 60.0 189.0 0.995 3.65 0.72 10.1 6 0 white 5.51684905778041 62 5.7 0.21 0.32 1.6 0.03 33.0 122.0 0.99044 3.33 0.52 11.9 6 0 white 6.12346040899808 63 5.7 0.21 0.37 4.5 0.04 58.0 140.0 0.99332 3.29 0.62 10.6 6 0 white 5.83237283250168 64 5.7 0.23 0.25 7.95 0.042 16.0 108.0 0.99486 3.44 0.61 10.3 6 0 white 5.77196091484939 65 5.7 0.24 0.3 1.3 0.03 25.0 98.0 0.98968 3.37 0.43 12.4 7 1 white 6.20006230753896 66 5.7 0.27 0.16 9.0 0.053 32.0 111.0 0.99474 3.36 0.37 10.4 6 0 white 5.82012138100799 67 5.7 0.28 0.24 17.5 0.044 60.0 167.0 0.9989 3.31 0.44 9.4 5 0 white 5.58639255490863 68 5.7 0.29 0.16 7.9 0.044 48.0 197.0 0.99512 3.21 0.36 9.4 5 0 white 5.70464075623377 69 5.7 0.36 0.21 6.7 0.038 51.0 166.0 0.9941 3.29 0.63 10.0 6 0 white 5.73887167484398 70 5.7 0.44 0.13 7.0 0.025 28.0 173.0 0.9913 3.33 0.48 12.5 6 0 white 6.10863484174436 71 5.7 0.46 0.46 1.4 0.04 31.0 169.0 0.9932 3.13 0.47 8.8 5 0 white 5.51760576376313 72 5.8 0.17 0.34 1.8 0.045 96.0 170.0 0.99035 3.38 0.9 11.8 8 1 white 6.18283633241276 73 5.8 0.18 0.28 1.3 0.034 9.0 94.0 0.99092 3.21 0.52 11.2 6 0 white 6.08461325126896 74 5.8 0.18 0.37 1.1 0.036 31.0 96.0 0.98942 3.16 0.48 12.0 6 0 white 6.2733670643463 75 5.8 0.19 0.24 1.3 0.044 38.0 128.0 0.99362 3.77 0.6 10.6 5 0 white 5.69866604546027 76 5.8 0.2 0.16 1.4 0.042 44.0 99.0 0.98912 3.23 0.37 12.2 6 0 white 6.34941127213872 77 5.8 0.23 0.27 1.8 0.043 24.0 69.0 0.9933 3.38 0.31 9.4 6 0 white 5.73272898619373 78 5.8 0.23 0.31 4.5 0.046 42.0 124.0 0.99324 3.31 0.64 10.8 6 0 white 5.85359036988319 79 5.8 0.24 0.26 10.05 0.039 63.0 162.0 0.99375 3.33 0.5 11.2 6 0 white 6.02956229823198 80 5.8 0.24 0.39 1.5 0.054 37.0 158.0 0.9932 3.21 0.52 9.3 6 0 white 5.70421363103409 81 5.8 0.26 0.24 9.2 0.044 55.0 152.0 0.9961 3.31 0.38 9.4 5 0 white 5.64603926168184 82 5.8 0.27 0.27 12.3 0.045 55.0 170.0 0.9972 3.28 0.42 9.3 6 0 white 5.61463126905065 83 5.8 0.28 0.28 4.2 0.044 52.0 158.0 0.992 3.35 0.44 10.7 7 1 white 5.98612571152822 84 5.8 0.28 0.3 1.5 0.026 31.0 114.0 0.98952 3.32 0.6 12.5 7 1 white 6.21881173417867 85 5.8 0.28 0.34 2.2 0.037 24.0 125.0 0.98986 3.36 0.33 12.8 8 1 white 6.19277044410768 86 5.8 0.28 0.34 4.0 0.031 40.0 99.0 0.9896 3.39 0.39 12.8 7 1 white 6.31055509702287 87 5.8 0.29 0.26 1.7 0.063 3.0 11.0 0.9915 3.39 0.54 13.5 6 0 red 5.93923364080806 88 5.8 0.29 0.38 10.7 0.038 49.0 136.0 0.99366 3.11 0.59 11.2 6 0 white 6.01518742838945 89 5.8 0.315 0.27 1.55 0.026 15.0 70.0 0.98994 3.37 0.4 11.9 8 1 white 6.14131328515478 90 5.8 0.32 0.28 4.3 0.032 46.0 115.0 0.98946 3.16 0.57 13.0 8 1 white 6.32503915541022 91 5.8 0.32 0.31 2.7 0.049 25.0 153.0 0.99067 3.44 0.73 12.2 7 1 white 6.07404951076921 92 5.8 0.32 0.31 2.7 0.049 25.0 153.0 0.99067 3.44 0.73 12.2 7 1 white 6.07404951076921 93 5.8 0.33 0.2 16.05 0.047 26.0 166.0 0.9976 3.09 0.46 8.9 5 0 white 5.69240645830368 94 5.8 0.33 0.23 5.0 0.053 29.0 106.0 0.99458 3.13 0.52 9.0 5 0 white 5.62587440249885 95 5.8 0.36 0.26 3.3 0.038 40.0 153.0 0.9911 3.34 0.55 11.3 6 0 white 6.02126540764172 96 5.8 0.36 0.5 1.0 0.127 63.0 178.0 0.99212 3.1 0.45 9.7 5 0 white 5.71786630673782 97 5.8 0.415 0.13 1.4 0.04 11.0 64.0 0.9922 3.29 0.52 10.5 5 0 white 5.76293264149788 98 5.8 0.555 0.26 4.5 0.053 17.0 126.0 0.9943 3.24 0.46 9.1 5 0 white 5.47712719130641 99 5.8 0.58 0.0 1.5 0.02 33.0 96.0 0.98918 3.29 0.38 12.4 6 0 white 6.10387150397577 100 5.8 0.6 0.0 1.3 0.044 72.0 197.0 0.99202 3.56 0.43 10.9 5 0 white 5.67272466326693 Rows: 1-100 | Columns: 15Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.