Loading...

verticapy.machine_learning.vertica.linear_model.ElasticNet.predict

ElasticNet.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 146.17447 | 6.81095|21.46169 | 0.00000
 fixed_acidity  |  0.15109  | 0.01234|12.24616 | 0.00000
volatile_acidity| -0.71695  | 0.08646|-8.29271 | 0.00000
  citric_acid   | -0.16916  | 0.09338|-1.81157 | 0.07011
 residual_sugar |  0.04431  | 0.00384|11.53629 | 0.00000
   chlorides    | -0.17881  | 0.38889|-0.45979 | 0.64569
    density     |-142.13186 | 6.92812|-20.51522| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_08b439ba55a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_08c4b38055a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5187 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.50.190.210.950.03389.0159.00.993323.340.428.050white5.53641820851246
24.70.60.172.30.05817.0106.00.99323.850.612.960red5.35185619977435
34.80.210.2110.20.03717.0112.00.993243.660.4812.271white5.98792740536351
44.80.260.2310.60.03423.0111.00.992743.460.2811.571white6.03802278933713
54.80.650.121.10.0134.010.00.992463.320.3613.540white5.39962800687937
64.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5.69026855787098
74.90.470.171.90.03560.0148.00.989643.270.3511.560white5.96765673672377
85.00.270.324.50.03258.0178.00.989563.450.3112.671white6.22789491663008
95.00.30.333.70.0354.0173.00.98873.360.313.071white6.29183793965646
105.00.330.161.50.04910.097.00.99173.480.4410.760white5.77181224715173
115.00.350.257.80.03124.0116.00.992413.390.411.360white5.9237050278694
125.00.40.54.30.04629.080.00.99023.490.6613.660red6.00191255571997
135.00.610.121.30.00965.0100.00.98743.260.3713.550white6.18728906958026
145.10.1650.225.70.04742.0146.00.99343.180.559.960white5.83990355011625
155.10.330.221.60.02718.089.00.98933.510.3812.571white6.12625309379993
165.10.330.221.60.02718.089.00.98933.510.3812.571white6.12625309379993
175.10.330.276.70.02244.0129.00.992213.360.3911.071white5.9310650850374
185.10.350.266.80.03436.0120.00.991883.380.411.560white5.96760643369586
195.10.350.266.80.03436.0120.00.991883.380.411.560white5.96760643369586
205.10.390.211.70.02715.072.00.98943.50.4512.560white6.07514529481429
215.10.510.182.10.04216.0101.00.99243.460.8712.971red5.58283194830511
225.10.5850.01.70.04414.086.00.992643.560.9412.971red5.50731613361449
235.20.1550.331.60.02813.059.00.989753.30.8411.981white6.18408341737782
245.20.160.340.80.02926.077.00.991553.250.5110.160white5.88734310810494
255.20.1850.221.00.0347.0123.00.992183.550.4410.1560white5.80885856773591
265.20.240.157.10.04332.0134.00.993783.240.489.960white5.82182131113112
275.20.240.453.80.02721.0128.00.9923.550.4911.281white5.88070673686272
285.20.380.267.70.05320.0103.00.99253.270.4512.260white5.90956681304706
295.20.4050.151.450.03810.044.00.991253.520.411.640white5.81366164545443
305.20.440.041.40.03643.0119.00.98943.360.3312.181white6.06826196379296
315.20.490.262.30.0923.074.00.99533.710.6212.260red5.18684433404746
325.30.2750.247.40.03828.0114.00.993133.380.5111.060white5.90318548136128
335.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.98165099069439
345.30.3950.071.30.03526.0102.00.9923.50.3510.660white5.73676433478283
355.30.570.011.70.0545.027.00.99343.570.8412.571red5.43678911643812
365.40.170.272.70.04928.0104.00.992243.460.5510.360white5.90477474506872
375.40.180.244.80.04130.0113.00.994453.420.49.460white5.68304951687119
385.40.1850.197.10.04836.0110.00.994383.260.419.560white5.79853274471452
395.40.450.276.40.03320.0102.00.989443.220.2713.481white6.26880400607288
405.40.50.135.00.02812.0107.00.990793.480.8813.571white6.00362115734544
415.40.590.077.00.04536.0147.00.99443.340.579.760white5.52172874684516
425.40.740.091.70.08916.026.00.994023.670.5611.660red5.22210357604655
435.40.8350.081.20.04613.093.00.99243.570.8513.071red5.37147204424559
445.50.160.311.20.02631.068.00.98983.330.4411.6560white6.20473682322262
455.50.490.031.80.04428.087.00.99083.50.8214.081red5.89674259642385
465.60.1750.290.80.04320.067.00.991123.280.489.960white6.00409735336737
475.60.190.461.10.03233.0115.00.99093.360.510.460white6.01111463315215
485.60.2050.1612.550.05131.0115.00.995643.40.3810.860white5.88135257048899
495.60.210.41.30.04181.0147.00.99013.220.9511.681white6.12788335527642
505.60.2250.249.80.05459.0140.00.995453.170.3910.260white5.7580975458456
515.60.230.258.00.04331.0101.00.994293.190.4210.460white5.83990347279618
525.60.230.293.10.02319.089.00.990683.250.5111.260white6.13269147738774
535.60.2450.321.10.04724.0152.00.99273.120.429.360white5.73684519005928
545.60.280.273.90.04352.0158.00.992023.350.4410.771white5.94164199719771
555.60.320.337.40.03725.095.00.992683.250.4911.160white5.96516416416083
565.60.390.244.70.03427.077.00.99063.280.3612.750white6.10673624316718
575.60.50.092.30.04917.099.00.99373.630.6313.050red5.50361118827726
585.70.10.271.30.04721.0100.00.99283.270.469.550white5.85901944667413
595.70.150.283.70.04557.0151.00.99133.220.2711.260white6.14137896279337
605.70.180.224.20.04225.0111.00.9943.350.399.450white5.76895525014555
615.70.210.242.30.04760.0189.00.9953.650.7210.160white5.51684905778041
625.70.210.321.60.0333.0122.00.990443.330.5211.960white6.12346040899808
635.70.210.374.50.0458.0140.00.993323.290.6210.660white5.83237283250168
645.70.230.257.950.04216.0108.00.994863.440.6110.360white5.77196091484939
655.70.240.31.30.0325.098.00.989683.370.4312.471white6.20006230753896
665.70.270.169.00.05332.0111.00.994743.360.3710.460white5.82012138100799
675.70.280.2417.50.04460.0167.00.99893.310.449.450white5.58639255490863
685.70.290.167.90.04448.0197.00.995123.210.369.450white5.70464075623377
695.70.360.216.70.03851.0166.00.99413.290.6310.060white5.73887167484398
705.70.440.137.00.02528.0173.00.99133.330.4812.560white6.10863484174436
715.70.460.461.40.0431.0169.00.99323.130.478.850white5.51760576376313
725.80.170.341.80.04596.0170.00.990353.380.911.881white6.18283633241276
735.80.180.281.30.0349.094.00.990923.210.5211.260white6.08461325126896
745.80.180.371.10.03631.096.00.989423.160.4812.060white6.2733670643463
755.80.190.241.30.04438.0128.00.993623.770.610.650white5.69866604546027
765.80.20.161.40.04244.099.00.989123.230.3712.260white6.34941127213872
775.80.230.271.80.04324.069.00.99333.380.319.460white5.73272898619373
785.80.230.314.50.04642.0124.00.993243.310.6410.860white5.85359036988319
795.80.240.2610.050.03963.0162.00.993753.330.511.260white6.02956229823198
805.80.240.391.50.05437.0158.00.99323.210.529.360white5.70421363103409
815.80.260.249.20.04455.0152.00.99613.310.389.450white5.64603926168184
825.80.270.2712.30.04555.0170.00.99723.280.429.360white5.61463126905065
835.80.280.284.20.04452.0158.00.9923.350.4410.771white5.98612571152822
845.80.280.31.50.02631.0114.00.989523.320.612.571white6.21881173417867
855.80.280.342.20.03724.0125.00.989863.360.3312.881white6.19277044410768
865.80.280.344.00.03140.099.00.98963.390.3912.871white6.31055509702287
875.80.290.261.70.0633.011.00.99153.390.5413.560red5.93923364080806
885.80.290.3810.70.03849.0136.00.993663.110.5911.260white6.01518742838945
895.80.3150.271.550.02615.070.00.989943.370.411.981white6.14131328515478
905.80.320.284.30.03246.0115.00.989463.160.5713.081white6.32503915541022
915.80.320.312.70.04925.0153.00.990673.440.7312.271white6.07404951076921
925.80.320.312.70.04925.0153.00.990673.440.7312.271white6.07404951076921
935.80.330.216.050.04726.0166.00.99763.090.468.950white5.69240645830368
945.80.330.235.00.05329.0106.00.994583.130.529.050white5.62587440249885
955.80.360.263.30.03840.0153.00.99113.340.5511.360white6.02126540764172
965.80.360.51.00.12763.0178.00.992123.10.459.750white5.71786630673782
975.80.4150.131.40.0411.064.00.99223.290.5210.550white5.76293264149788
985.80.5550.264.50.05317.0126.00.99433.240.469.150white5.47712719130641
995.80.580.01.50.0233.096.00.989183.290.3812.460white6.10387150397577
1005.80.60.01.30.04472.0197.00.992023.560.4310.950white5.67272466326693
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.