Loading...

verticapy.machine_learning.vertica.neighbors.KernelDensity.predict

KernelDensity.predict(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, inplace: bool = True) vDataFrame

Predicts using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and SELECT 1 are invalid.

X: SQLColumns, optional

list of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added :py:class`vDataColumn`. If empty, a name is generated.

inplace: bool, optional

If set to True, the prediction is added to the :py:class`vDataFrame`.

Returns

vDataFrame

the input object.

Examples

We import verticapy:

import verticapy as vp

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Divide your dataset into training and testing subsets.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Let’s import the model:

from verticapy.machine_learning.vertica import LinearRegression

Then we can create the model:

model = LinearRegression(
    tol = 1e-6,
    max_iter = 100,
    solver = 'newton',
    fit_intercept = True,
)

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



=======
details
=======
   predictor    |coefficient|std_err | t_value |p_value 
----------------+-----------+--------+---------+--------
   Intercept    | 143.08959 | 6.87522|20.81236 | 0.00000
 fixed_acidity  |  0.13445  | 0.01232|10.91014 | 0.00000
volatile_acidity| -0.72574  | 0.08832|-8.21676 | 0.00000
  citric_acid   | -0.09902  | 0.09537|-1.03836 | 0.29915
 residual_sugar |  0.04249  | 0.00384|11.06603 | 0.00000
   chlorides    |  0.00738  | 0.39155| 0.01886 | 0.98495
    density     |-138.93071 | 6.99294|-19.86727| 0.00000


==============
regularization
==============
type| lambda 
----+--------
none| 1.00000


===========
call_string
===========
linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_7a6399b655a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_7a74858c55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"'
USING PARAMETERS optimizer='newton', epsilon=1e-06, max_iterations=100, regularization='none', lambda=1, alpha=0.5, fit_intercept=true)

===============
Additional Info
===============
       Name       |Value
------------------+-----
 iteration_count  |  1  
rejected_row_count|  0  
accepted_row_count|5197 

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.40.540.095.10.03852.097.00.990223.410.412.271white5.92535808766749
24.60.4450.01.40.05311.0178.00.994263.790.5510.250white5.31172998520015
34.80.130.321.20.04240.098.00.98983.420.6411.871white6.14659144485051
44.80.2250.381.20.07447.0130.00.991323.310.410.360white5.86076667182991
54.90.3450.341.00.06832.0143.00.991383.240.410.150white5.77420637643962
65.00.20.41.90.01520.098.00.98973.370.5512.0560white6.15819314399232
75.00.310.06.40.04643.0166.00.9943.30.639.960white5.71199451734955
85.00.40.54.30.04629.080.00.99023.490.6613.660red6.03587830022724
95.00.420.242.00.0619.050.00.99173.720.7414.081red5.74109452281044
105.00.740.01.20.04116.046.00.992584.010.5912.560red5.37623470372674
115.10.260.331.10.02746.0113.00.989463.350.4311.471white6.13446705840437
125.10.470.021.30.03418.044.00.99213.90.6212.860red5.65453188142411
135.20.160.340.80.02926.077.00.991553.250.5110.160white5.91639857153925
145.20.1850.221.00.0347.0123.00.992183.550.4410.1560white5.83111662059284
155.20.20.273.20.04716.093.00.992353.440.5310.171white5.88526037369397
165.20.3350.21.70.03317.074.00.990023.340.4812.360white6.05409070521679
175.20.3650.0813.50.04137.0142.00.9973.460.399.960white5.57588291577503
185.20.370.331.20.02813.081.00.99023.370.3811.760white5.96952840498054
195.20.380.267.70.05320.0103.00.99253.270.4512.260white5.92601885699537
205.20.440.041.40.03643.0119.00.98943.360.3312.181white6.06714490509052
215.20.480.041.60.05419.0106.00.99273.540.6212.271red5.58827462208524
225.20.50.182.00.03623.0129.00.989493.360.7713.471white6.02272647300919
235.20.60.077.00.04433.0147.00.99443.330.589.750white5.49139484437316
245.30.160.391.00.02840.0101.00.991563.570.5910.660white5.93199322162943
255.30.30.164.20.02937.0100.00.99053.30.3611.881white6.13640113700839
265.30.330.31.20.04825.0119.00.990453.320.6211.360white5.9803884898862
275.30.360.276.30.02840.0132.00.991863.370.411.660white5.98223607180611
285.30.3950.071.30.03526.0102.00.9923.50.3510.660white5.74480122719976
295.30.5850.077.10.04434.0145.00.99453.340.579.760white5.50608153595704
305.40.220.356.50.02926.087.00.990923.290.4412.571white6.22846208297508
315.40.270.224.60.02229.0107.00.988893.330.5413.860white6.40629869994501
325.40.290.381.20.02931.0132.00.988953.280.3612.460white6.22319674898102
335.40.330.314.00.0327.0108.00.990313.30.4312.271white6.13112703632845
345.40.530.162.70.03634.0128.00.988563.20.5313.281white6.18877184645194
355.40.590.077.00.04536.0147.00.99443.340.579.760white5.52554941521461
365.50.160.261.50.03235.0100.00.990763.430.7712.060white6.10417421679392
375.50.190.270.90.0452.0103.00.990263.50.3911.250white6.12544349262998
385.50.230.192.20.04439.0161.00.992093.190.4310.460white5.9053566880593
395.50.320.131.30.03745.0156.00.991843.260.3810.750white5.84242356459634
405.50.3750.381.70.03617.098.00.991423.290.3910.560white5.85309090136164
415.50.420.091.60.01918.068.00.99063.330.5111.471white5.95869841834934
425.60.1750.290.80.04320.067.00.991123.280.489.960white6.02408692161666
435.60.180.292.30.045.047.00.991263.070.4510.140white6.06471783314046
445.60.1850.197.10.04836.0110.00.994383.260.419.560white5.84152930954329
455.60.210.244.40.02737.0150.00.9913.30.3111.571white6.17314776551527
465.60.260.2710.60.0327.0119.00.99473.40.3410.771white5.88329455056905
475.60.270.370.90.02511.049.00.988453.290.3313.160white6.32228094547011
485.60.310.371.40.07412.096.00.99543.320.589.250red5.34928889221806
495.60.320.337.40.03725.095.00.992683.250.4911.160white5.97853896645452
505.60.330.281.20.03133.097.00.991263.490.5810.960white5.91004428664374
515.60.340.11.30.03120.068.00.99063.360.5111.271white6.01655422222439
525.60.340.252.50.04647.0182.00.990933.210.411.350white6.006949961553
535.60.340.36.90.03823.089.00.992663.250.4911.160white5.94853692241153
545.60.350.145.00.04648.0198.00.99373.30.7110.350white5.73196719428742
555.60.350.371.00.0386.072.00.99023.370.3411.450white6.02543807336738
565.60.410.227.10.0544.0154.00.99313.30.410.550white5.85311394422607
575.60.420.342.40.02234.097.00.989153.220.3812.871white6.18284955761095
585.60.50.092.30.04917.099.00.99373.630.6313.050red5.51336234821699
595.60.6150.01.60.08916.059.00.99433.580.529.950red5.32601007232466
605.60.660.02.20.0873.011.00.993783.710.6312.871red5.39107394398928
615.60.660.02.50.0667.015.00.992563.520.5812.950red5.57316075139738
625.70.1350.34.60.04219.0101.00.99463.310.429.360white5.7435393269981
635.70.140.35.40.04526.0105.00.994693.320.459.350white5.76141945718064
645.70.150.283.70.04557.0151.00.99133.220.2711.260white6.1548880119891
655.70.150.4711.40.03549.0128.00.994563.030.3410.581white6.0102434310451
665.70.180.361.20.0469.071.00.991993.70.6810.971white5.92311915164044
675.70.210.242.30.04760.0189.00.9953.650.7210.160white5.54179265825047
685.70.220.216.00.04441.0113.00.998623.220.468.960white5.61763093548399
695.70.250.2612.50.04952.5120.00.996913.080.459.460white5.67881775224168
705.70.250.2711.50.0424.0120.00.994113.330.3110.860white6.02427901414248
715.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.97253064591743
725.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.97253064591743
735.70.280.2417.50.04460.0167.00.99893.310.449.450white5.59495724679309
745.70.310.297.30.0533.0143.00.993323.310.511.066666666666760white5.91013371986597
755.70.320.181.40.02926.0104.00.99063.440.3711.060white6.0408260191584
765.70.370.31.10.02924.088.00.988833.180.3911.760white6.2258173139993
775.70.410.211.90.04830.0112.00.991383.290.5511.260white5.88555738058309
785.71.130.091.50.1727.019.00.9943.50.489.840red4.99483180852295
795.80.130.2212.70.05824.0183.00.99563.320.4211.760white5.97387528708694
805.80.170.341.80.04596.0170.00.990353.380.911.881white6.1991336949867
815.80.180.281.30.0349.094.00.990923.210.5211.260white6.09730199434131
825.80.190.241.30.04438.0128.00.993623.770.610.650white5.71896649575601
835.80.190.2510.80.04233.0124.00.996463.220.419.260white5.72703457162794
845.80.20.341.00.03540.086.00.989933.50.4211.750white6.20164822872175
855.80.230.211.50.04421.0110.00.991383.30.5711.060white6.01261013076044
865.80.230.313.50.04435.0158.00.989983.190.3712.171white6.28218683435864
875.80.230.314.50.04642.0124.00.993243.310.6410.860white5.87177552245305
885.80.240.281.40.03840.076.00.987113.10.2913.971white6.58736213852166
895.80.240.391.50.05437.0158.00.99323.210.529.360white5.73474848515244
905.80.250.2413.30.04441.0137.00.99723.340.429.550white5.68790673107196
915.80.260.181.20.03140.0114.00.99083.420.411.071white6.06154614603807
925.80.270.2212.70.05842.0206.00.99463.320.3812.360white6.01120287145415
935.80.280.272.60.05430.0156.00.99143.530.4212.450white6.01441395129061
945.80.280.669.10.03926.0159.00.99653.660.5510.850white5.54330960769616
955.80.290.050.80.03811.030.00.99243.360.359.250white5.81341444579476
965.80.30.231.50.03437.0121.00.988712.960.3412.160white6.33069924986478
975.80.310.317.50.05255.0230.00.99493.190.469.850white5.71060001451431
985.80.310.324.50.02428.094.00.989063.250.5213.771white6.39329427144509
995.80.3150.1919.40.03128.0106.00.997042.970.410.5560white5.92699493453469
1005.80.320.284.30.03246.0115.00.989463.160.5713.081white6.32598702886548
Rows: 1-100 | Columns: 15

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.