
verticapy.machine_learning.vertica.ensemble.IsolationForest¶
- class verticapy.machine_learning.vertica.ensemble.IsolationForest(name: str = None, overwrite_model: bool = False, n_estimators: int = 100, max_depth: int = 10, nbins: int = 32, sample: float = 0.632, col_sample_by_tree: float = 1.0)¶
Creates an
IsolationForest
object using the Vertica IFOREST algorithm.Parameters¶
- name: str, optional
Name of the model. The model is stored in the DB.
- overwrite_model: bool, optional
If set to
True
, training a model with the same name as an existing model overwrites the existing model.- n_estimators: int, optional
The number of trees in the forest, an
integer
between1
and1000
, inclusive.- max_depth: int, optional
Maximum depth of each tree, an
integer
between1
and100
, inclusive.- nbins: int, optional
Number of bins used to find splits in each column, where more splits leads to a longer runtime but more fine-grained, possibly better splits. Must be an
integer
between2
and1000
, inclusive.- sample: float, optional
The portion of the input data set that is randomly selected for training each tree, a
float
between0.0
and1.0
, inclusive.- col_sample_by_tree: float, optional
float
in the range(0,1]
that specifies the fraction of columns (features), chosen at random, to use when building each tree.
Attributes¶
Many attributes are created during the fitting phase.
- trees_: list of BinaryTreeAnomaly
Tree models are instances of `
BinaryTreeAnomaly
, each possessing various attributes. For more detailed information, refer to the documentation forBinaryTreeAnomaly
.- psy_: int
Sampling size used to compute the final score.
- n_estimators_: int
The number of model estimators.
Note
All attributes can be accessed using the
get_attributes()
method.Note
Several other attributes can be accessed by using the
get_vertica_attributes()
method.Examples¶
The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.
Load data for machine learning¶
We import
verticapy
:import verticapy as vp
Hint
By assigning an alias to
verticapy
, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions fromverticapy
are used as intended without interfering with functions from other libraries.For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Note
VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.
Model Initialization¶
First we import the
IsolationForest
model:from verticapy.machine_learning.vertica import IsolationForest
Then we can create the model:
model = IsolationForest( n_estimators = 10, max_depth = 3, nbins = 6, )
Hint
In
verticapy
1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.Important
The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.
Model Training¶
We can now fit the model:
model.fit(data, X = ["density", "sulphates"]) =========== call_string =========== SELECT iforest('"public"."_verticapy_tmp_isolationforest_v_demo_b109fe8e55a311ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_b115f21655a311ef880f0242ac120002_"', '"density", "sulphates"' USING PARAMETERS exclude_columns='', ntree=10, sampling_size=0.632, col_sample_by_tree=1, max_depth=3, nbins=6); ======= details ======= predictor| type ---------+---------------- density |float or numeric sulphates|float or numeric =============== Additional Info =============== Name |Value ------------------+----- tree_count | 10 rejected_row_count| 0 accepted_row_count|6497
Important
To train a model, you can directly use the
vDataFrame
or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. Inverticapy
, we don’t work usingX
matrices andy
vectors. Instead, we work directly with lists of predictors and the response name.Hint
For clustering and anomaly detection, the use of predictors is optional. In such cases, all available predictors are considered, which can include solely numerical variables or a combination of numerical and categorical variables, depending on the model’s capabilities.
Prediction¶
Prediction is straight-forward:
model.predict(data, ["density", "sulphates"])
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1231 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 15Plots - Anomaly Detection¶
Plots highlighting the outliers can be easily drawn using:
model.plot()
Note
Most anomaly detection methods produce a score. In scenarios involving 2 or 3 predictors, using a bubble plot to visualize the model’s results is a straightforward approach. In such plots, the size of each bubble corresponds to the anomaly score.
Plots - Tree¶
Tree models can be visualized by drawing their tree plots. For more examples, check out Machine Learning - Tree Plots.
model.plot_tree()
Note
The above example may not render properly in the doc because of the huge size of the tree. But it should render nicely in jupyter environment.
In order to plot graph using graphviz separately, you can extract the graphviz DOT file code as follows:
model.to_graphviz() Out[4]: 'digraph Tree {\ngraph [bgcolor="#FFFFFFDD"];\n0 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n0 -> 1 [label="<= 0.995755", color="#000000", fontcolor="#000000"]\n0 -> 2 [label="> 0.995755", color="#000000", fontcolor="#000000"]\n1 [label="\\"sulphates\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n1 -> 3 [label="<= 0.516667", color="#000000", fontcolor="#000000"]\n1 -> 4 [label="> 0.516667", color="#000000", fontcolor="#000000"]\n2 [label="\\"sulphates\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n2 -> 5 [label="<= 0.813333", color="#000000", fontcolor="#000000"]\n2 -> 6 [label="> 0.813333", color="#000000", fontcolor="#000000"]\n3 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFFDD"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 2 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 1460 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#fffefe"><FONT color="#111111"> anomaly_score: 0.5014948743393911 </FONT> </td></tr></table>>, fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n4 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFFDD"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 2 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 992 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#fff5f5"><FONT color="#111111"> anomaly_score: 0.5187973272943257 </FONT> </td></tr></table>>, fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n5 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFFDD"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 2 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 1468 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#fffefe"><FONT color="#111111"> anomaly_score: 0.5012544088467331 </FONT> </td></tr></table>>, fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n6 [label="\\"sulphates\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n6 -> 7 [label="<= 1.703333", color="#000000", fontcolor="#000000"]\n6 -> 8 [label="> 1.703333", color="#000000", fontcolor="#000000"]\n7 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFFDD"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 3 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 113 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#ffcbcb"><FONT color="#111111"> anomaly_score: 0.6008201223522015 </FONT> </td></tr></table>>, fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n8 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFFDD"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 3 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 1 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#ff3e3e"><FONT color="#111111"> anomaly_score: 0.8766449489165545 </FONT> </td></tr></table>>, fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n}'
This string can then be copied into a DOT file which can be parsed by graphviz.
Plots - Contour¶
In order to understand the parameter space, we can also look at the contour plots:
model.contour()