Loading...

verticapy.machine_learning.vertica.ensemble.IsolationForest#

class verticapy.machine_learning.vertica.ensemble.IsolationForest(name: str = None, overwrite_model: bool = False, n_estimators: int = 100, max_depth: int = 10, nbins: int = 32, sample: float = 0.632, col_sample_by_tree: float = 1.0)#

Creates an IsolationForest object using the Vertica IFOREST algorithm.

Parameters#

name: str, optional

Name of the model. The model is stored in the DB.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

n_estimators: int, optional

The number of trees in the forest, an integer between 1 and 1000, inclusive.

max_depth: int, optional

Maximum depth of each tree, an integer between 1 and 100, inclusive.

nbins: int, optional

Number of bins used to find splits in each column, where more splits leads to a longer runtime but more fine-grained, possibly better splits. Must be an integer between 2 and 1000, inclusive.

sample: float, optional

The portion of the input data set that is randomly selected for training each tree, a float between 0.0 and 1.0, inclusive.

col_sample_by_tree: float, optional

float in the range (0,1] that specifies the fraction of columns (features), chosen at random, to use when building each tree.

Attributes#

Many attributes are created during the fitting phase.

trees_: list of BinaryTreeAnomaly

Tree models are instances of ` BinaryTreeAnomaly, each possessing various attributes. For more detailed information, refer to the documentation for BinaryTreeAnomaly.

psy_: int

Sampling size used to compute the final score.

n_estimators_: int

The number of model estimators.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

Model Initialization#

First we import the IsolationForest model:

from verticapy.machine_learning.vertica import IsolationForest

Then we can create the model:

model = IsolationForest(
    n_estimators = 10,
    max_depth = 3,
    nbins = 6,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(data, X = ["density", "sulphates"])

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Hint

For clustering and anomaly detection, the use of predictors is optional. In such cases, all available predictors are considered, which can include solely numerical variables or a combination of numerical and categorical variables, depending on the model’s capabilities.

Prediction#

Prediction is straight-forward:

model.predict(data, ["density", "sulphates"])
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
Integer
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 15

Plots - Anomaly Detection#

Plots highlighting the outliers can be easily drawn using:

model.plot()

Note

Most anomaly detection methods produce a score. In scenarios involving 2 or 3 predictors, using a bubble plot to visualize the model’s results is a straightforward approach. In such plots, the size of each bubble corresponds to the anomaly score.

Plots - Tree#

Tree models can be visualized by drawing their tree plots. For more examples, check out Machine Learning - Tree Plots.

model.plot_tree()
../_images/machine_learning_vertica_tree_isolation_for_.png

Note

The above example may not render properly in the doc because of the huge size of the tree. But it should render nicely in jupyter environment.

In order to plot graph using graphviz separately, you can extract the graphviz DOT file code as follows:

model.to_graphviz()
Out[4]: 'digraph Tree {\ngraph [bgcolor="#FFFFFF00"];\n0 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n0 -> 1 [label="<= 1.02169", color="#666666", fontcolor="#666666"]\n0 -> 2 [label="> 1.02169", color="#666666", fontcolor="#666666"]\n1 [label="\\"sulphates\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n1 -> 3 [label="<= 1.703333", color="#666666", fontcolor="#666666"]\n1 -> 4 [label="> 1.703333", color="#666666", fontcolor="#666666"]\n2 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFF00"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 1 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 1 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#ff1515"><FONT color="#111111"> anomaly_score: 0.9570645826774091 </FONT> </td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n3 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFF00", fontcolor="#666666", color="#666666"]\n3 -> 5 [label="<= 0.995755", color="#666666", fontcolor="#666666"]\n3 -> 6 [label="> 0.995755", color="#666666", fontcolor="#666666"]\n4 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFF00"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 2 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 3 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#ff4242"><FONT color="#111111"> anomaly_score: 0.8687025466469649 </FONT> </td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n5 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFF00"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 3 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 2463 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#ffffff"><FONT color="#111111"> anomaly_score: 0.45843147369465564 </FONT> </td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n6 [label=<<table border="0" cellspacing="0"> <tr><td port="port1" border="1" bgcolor="#FFFFFF00"><FONT color="#000000"><b>leaf</b></FONT></td></tr><tr><td port="port0" border="1" align="left">leaf_path_length: 3 </td></tr><tr><td port="port1" border="1" align="left"> training_row_count: 1604 </td></tr><tr><td port="port2" border="1" align="left" bgcolor="#ffffff"><FONT color="#111111"> anomaly_score: 0.4760167706138872 </FONT> </td></tr></table>>, fillcolor="#FFFFFF00", fontcolor="#666666", shape="none", color="#666666"]\n}'

This string can then be copied into a DOT file which can be parsed by graphviz.

Plots - Contour#

In order to understand the parameter space, we can also look at the contour plots:

model.contour()

Note

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to chart_gallery.contour_plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[5]: 
{'n_estimators': 10,
 'max_depth': 3,
 'nbins': 6,
 'sample': 0.632,
 'col_sample_by_tree': 1.0}

And to manually change some of the parameters:

model.set_params({'max_depth': 5})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The preceding methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL query equivalent of the IsolationForest model by:

model.to_sql()
Out[7]: 'POWER(2, - (((CASE WHEN "density" < 1.02169 THEN (CASE WHEN "sulphates" < 1.703333 THEN (CASE WHEN "density" < 0.995755 THEN 1.1252219989067427 ELSE 1.0709156926665888 END) ELSE 0.203065828019297 END) ELSE 0.06331181389111261 END) + (CASE WHEN "sulphates" < 1.11 THEN (CASE WHEN "sulphates" < 0.516667 THEN 1.0431002495475552 ELSE (CASE WHEN "density" < 0.995755 THEN 1.0100688615503781 ELSE 0.9976040083971192 END) END) ELSE (CASE WHEN "density" < 0.995755 THEN 0.12662362778222522 ELSE (CASE WHEN "sulphates" < 1.406667 THEN 0.48721807280981533 ELSE 0.33726330212896766 END) END) END) + (CASE WHEN "density" < 1.02169 THEN (CASE WHEN "density" < 0.995755 THEN 1.0661566454064018 ELSE (CASE WHEN "density" < 1.0044 THEN 1.0708367256063058 ELSE 0.25324725556445044 END) END) ELSE 0.06331181389111261 END) + (CASE WHEN "sulphates" < 0.516667 THEN (CASE WHEN "density" < 1.0044 THEN 1.0396540839099082 ELSE 0.12662362778222522 END) ELSE (CASE WHEN "density" < 1.013045 THEN (CASE WHEN "sulphates" < 1.703333 THEN 1.0948673198684633 ELSE 0.25324725556445044 END) ELSE 0.12662362778222522 END) END) + (CASE WHEN "density" < 1.030335 THEN (CASE WHEN "sulphates" < 1.11 THEN (CASE WHEN "sulphates" < 0.813333 THEN 1.1842591291303253 ELSE 0.7790353920328106 END) ELSE (CASE WHEN "density" < 0.995755 THEN 0.1899354416733378 ELSE 0.5276650507670501 END) END) ELSE 0.06331181389111261 END) + (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "sulphates" < 1.11 THEN (CASE WHEN "sulphates" < 0.516667 THEN 1.060984160975941 ELSE 1.0122204413779392 END) ELSE 0.12662362778222522 END) ELSE (CASE WHEN "density" < 1.030335 THEN (CASE WHEN "sulphates" < 1.11 THEN 1.0724067851078303 ELSE 0.5276650507670501 END) ELSE 0.12662362778222522 END) END) + (CASE WHEN "sulphates" < 0.813333 THEN (CASE WHEN "density" < 0.995755 THEN (CASE WHEN "sulphates" < 0.516667 THEN 1.0640212503552926 ELSE 1.0025757004729423 END) ELSE (CASE WHEN "sulphates" < 0.516667 THEN 0.9569275569301255 ELSE 0.9862657791716054 END) END) ELSE (CASE WHEN "sulphates" < 1.11 THEN (CASE WHEN "density" < 0.995755 THEN 0.6548239327550541 ELSE 0.7116822063704441 END) ELSE (CASE WHEN "sulphates" < 1.406667 THEN 0.48721807280981533 ELSE 0.30716713585632544 END) END) END) + (CASE WHEN "sulphates" < 1.703333 THEN (CASE WHEN "sulphates" < 1.11 THEN (CASE WHEN "density" < 1.0044 THEN 1.1891931417341022 ELSE 0.1899354416733378 END) ELSE 0.452255868216925 END) ELSE 0.18054350807410022 END) + (CASE WHEN "density" < 0.995755 THEN 1.0000805619348907 ELSE (CASE WHEN "sulphates" < 1.703333 THEN (CASE WHEN "density" < 1.030335 THEN 1.0708367256063058 ELSE 0.1899354416733378 END) ELSE 0.1899354416733378 END) END) + (CASE WHEN "sulphates" < 1.406667 THEN (CASE WHEN "sulphates" < 0.516667 THEN (CASE WHEN "density" < 0.995755 THEN 1.0592648720207938 ELSE 0.9565385430234654 END) ELSE (CASE WHEN "density" < 1.013045 THEN 1.0971337205066363 ELSE 0.1899354416733378 END) END) ELSE 0.2106396743467424 END)) / 10))'

Note

This SQL query can be directly used in any database.

Deploy SQL

To get the SQL query which uses Vertica functions use below:

model.deploySQL()
Out[8]: '((APPLY_IFOREST("density", "sulphates" USING PARAMETERS model_name = \'"public"."_verticapy_tmp_isolationforest_v_demo_7bae2ea8e22c11eea3a80242ac120002_"\', match_by_pos = \'true\', threshold = 0.7)).is_anomaly)::int'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[0.9, 0.5]]

model.to_python()(X)
Out[10]: array([0.47198287])

Hint

The to_python() method is used to retrieve the anomaly score. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, n_estimators: int = 100, max_depth: int = 10, nbins: int = 32, sample: float = 0.632, col_sample_by_tree: float = 1.0) None#

Must be overridden in the child class

Methods

__init__([name, overwrite_model, ...])

Must be overridden in the child class

contour([nbins, chart])

Draws the model's contour plot.

decision_function(vdf[, X, name, inplace])

Returns the anomaly score using the input relation.

deploySQL([X, cutoff, contamination, ...])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([tree_id, show, chart])

Computes the model's features importance.

fit(input_relation[, X, return_report])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_score([tree_id])

Returns the feature importance metrics for the input tree.

get_tree([tree_id])

Returns a table with all the input tree information.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

plot_tree([tree_id, pic_path])

Draws the input tree.

predict(vdf[, X, name, cutoff, ...])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_graphviz([tree_id, classes_color, ...])

Returns the code for a Graphviz tree.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes