Loading...

verticapy.machine_learning.vertica.linear_model.PoissonRegressor#

class verticapy.machine_learning.vertica.linear_model.PoissonRegressor(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, penalty: Literal['none', 'l2', None] = 'none', C: int | float | Decimal = 1.0, max_iter: int = 100, solver: Literal['newton'] = 'newton', fit_intercept: bool = True)#

Creates an PoissonRegressor object using the Vertica Poisson Regression algorithm.

Parameters#

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

tol: float, optional

Determines whether the algorithm has reached the specified accuracy result.

penalty: str, optional

Determines the method of regularization.

  • None:

    No Regularization.

  • l2:

    L2 Regularization.

C: PythonNumber, optional

The regularization parameter value. The value must be zero or non-negative.

max_iter: int, optional

Determines the maximum number of iterations the algorithm performs before achieving the specified accuracy result.

solver: str, optional

The optimizer method used to train the model.

  • newton:

    Newton Method.

fit_intercept: bool, optional

boolean, specifies whether the model includes an intercept. If set to False, no intercept is used in training the model. Note that setting fit_intercept to False does not work well with the BFGS optimizer.

Attributes#

Many attributes are created during the fitting phase.

coef_: numpy.array

The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.

intercept_: float

The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.

features_importance_: numpy.array

The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization#

First we import the PoissonRegressor model:

from verticapy.machine_learning.vertica import PoissonRegressor

Then we can create the model:

model = PoissonRegressor(
    tol = 1e-6,
    penalty = 'L2',
    C = 1,
    max_iter = 100,
    fit_intercept = True,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Metrics#

We can get the entire report using:

model.report()
value
explained_variance0.107009756450883
max_error3.12361909182824
median_absolute_error0.563974306438254
mean_absolute_error0.625220353561954
mean_squared_error0.669726221116383
root_mean_squared_error0.818368023028993
r20.106074773818296
r2_adj0.101923418278752
aic-506.588607022164
bic-470.565821506554
Rows: 1-10 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["mse", "r2"]).

For LinearModel, we can easily get the ANOVA table using:

model.report(metrics = "anova")
Df
SS
MS
F
p_value
Regression688.167505721372514.69458428689541821.8229453013106141.4912598816688092e-24
Residual1292869.9743612301810.67335476875401
Total1298973.207082371055
Rows: 1-3 | Columns: 6

You can also use the LinearModel.score function to compute the R-squared value:

model.score()
Out[2]: 0.106074773818296

Prediction#

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.20.170.361.80.02993.0161.00.989993.650.8912.071white6.19059498205268
24.40.540.095.10.03852.097.00.990223.410.412.271white5.63203890240205
34.70.1450.291.00.04235.090.00.99083.760.4911.360white6.1861738977557
44.70.60.172.30.05817.0106.00.99323.850.612.960red5.52046329847092
54.70.670.091.00.025.09.00.987223.30.3413.650white5.60837748571841
64.80.130.321.20.04240.098.00.98983.420.6411.871white6.21674982263727
74.80.260.2310.60.03423.0111.00.992743.460.2811.571white5.90052792515551
84.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5.92929085522703
95.00.240.195.00.04317.0101.00.994383.670.5710.050white5.95934572255456
105.00.270.324.50.03258.0178.00.989563.450.3112.671white6.01856272303732
115.00.290.545.70.03554.0155.00.989763.270.3412.981white5.97958307859413
125.00.30.333.70.0354.0173.00.98873.360.313.071white6.00658353221974
135.00.310.06.40.04643.0166.00.9943.30.639.960white5.83490814482384
145.00.420.242.00.0619.050.00.99173.720.7414.081red5.75755051240319
155.00.550.148.30.03235.0164.00.99183.530.5112.581white5.58437330240289
165.01.020.041.40.04541.085.00.99383.750.4810.540red5.07530082364025
175.10.110.321.60.02812.090.00.990083.570.5212.260white6.27787109553602
185.10.290.288.30.02627.0107.00.993083.360.3711.060white5.91784869047844
195.10.330.276.70.02244.0129.00.992213.360.3911.071white5.90886959427167
205.10.470.021.30.03418.044.00.99213.90.6212.860red5.75913835029307
215.20.1550.331.60.02813.059.00.989753.30.8411.981white6.22235489806706
225.20.160.340.80.02926.077.00.991553.250.5110.160white6.2052294203785
235.20.20.273.20.04716.093.00.992353.440.5310.171white6.0524797479508
245.20.240.453.80.02721.0128.00.9923.550.4911.281white6.0651764649935
255.20.250.231.40.04720.077.00.990013.320.6211.450white6.03539116456126
265.20.3350.21.70.03317.074.00.990023.340.4812.360white5.95967472586132
275.20.340.01.80.0527.063.00.99163.680.7914.060red5.87475592144092
285.20.490.262.30.0923.074.00.99533.710.6212.260red5.55407580197242
295.30.1650.241.10.05125.0105.00.99253.320.479.150white6.11334719406717
305.30.230.560.90.04146.0141.00.991193.160.629.750white6.09532178503646
315.30.30.164.20.02937.0100.00.99053.30.3611.881white5.97391514706522
325.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.8543657624867
335.30.320.126.60.04322.0141.00.99373.360.610.460white5.84014955897109
345.30.360.276.30.02840.0132.00.991863.370.411.660white5.86429742658434
355.30.3950.071.30.03526.0102.00.9923.50.3510.660white5.85501723913811
365.40.150.322.50.03710.051.00.988783.040.5812.660white6.20041161908294
375.40.170.272.70.04928.0104.00.992243.460.5510.360white6.09511809172519
385.40.240.182.30.0522.0145.00.992073.240.4610.350white6.00293215343225
395.40.310.473.00.05346.0144.00.99313.290.7610.050white5.90307758556096
405.40.4150.191.60.03927.088.00.992653.540.4110.071white5.81613074552104
415.40.8350.081.20.04613.093.00.99243.570.8513.071red5.29803734959685
425.50.160.261.50.03235.0100.00.990763.430.7712.060white6.19114130919213
435.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white6.2271104884569
445.50.160.311.20.02631.068.00.98983.330.4411.6560white6.2271104884569
455.50.170.232.90.03910.0108.00.992433.280.510.050white6.11715931344899
465.50.180.225.50.03710.086.00.991563.460.4412.250white6.08158320802691
475.50.290.31.10.02220.0110.00.988693.340.3812.871white6.07996373423501
485.50.30.251.90.02933.0118.00.989723.360.6612.560white6.02123665132511
495.50.620.331.70.03724.0118.00.987583.150.3913.5560white5.62888131855897
505.60.160.271.40.04453.0168.00.99183.280.3710.160white6.14720160035185
515.60.180.271.70.0331.0103.00.988923.350.3712.960white6.18890192912861
525.60.180.310.20.02828.0131.00.99543.490.4210.871white6.00589164961604
535.60.190.312.70.02711.0100.00.989643.460.413.271white6.16485419441711
545.60.190.461.10.03233.0115.00.99093.360.510.460white6.16946769374296
555.60.210.244.40.02737.0150.00.9913.30.3111.571white6.09484495503484
565.60.220.321.20.02429.097.00.988233.20.4613.0571white6.17157452813557
575.60.2450.321.10.04724.0152.00.99273.120.429.360white6.02533556780161
585.60.2550.5710.70.05666.0171.00.994643.250.6110.471white5.84981874170867
595.60.280.46.10.03436.0118.00.991443.210.4312.171white5.9659593094127
605.60.320.337.40.03725.095.00.992683.250.4911.160white5.87128536198162
615.60.340.36.90.03823.089.00.992663.250.4911.160white5.84848530500782
625.60.350.371.00.0386.072.00.99023.370.3411.450white5.947142917033
635.60.410.227.10.0544.0154.00.99313.30.410.550white5.71638731722763
645.60.50.092.30.04917.099.00.99373.630.6313.050red5.65890899706025
655.60.50.092.30.04917.099.00.99373.630.6313.050red5.65890899706025
665.60.540.041.70.0495.013.00.99423.720.5811.450red5.61039492664447
675.60.6050.052.40.07319.025.00.992583.560.5512.950red5.47715062135999
685.60.660.02.50.0667.015.00.992563.520.5812.950red5.42692209518657
695.70.1350.34.60.04219.0101.00.99463.310.429.360white6.11232187885974
705.70.140.35.40.04526.0105.00.994693.320.459.350white6.08471296576298
715.70.160.266.30.04328.0113.00.99363.060.589.960white6.06074363399541
725.70.160.321.20.0367.089.00.991113.260.4811.050white6.18493520220153
735.70.20.32.50.04638.0125.00.992763.340.59.960white6.06542360597559
745.70.210.242.30.04760.0189.00.9953.650.7210.160white6.02453645542096
755.70.220.216.00.04441.0113.00.998623.220.468.960white5.79106764751681
765.70.220.2216.650.04439.0110.00.998553.240.489.060white5.78425483424413
775.70.220.251.10.0597.0175.00.990993.440.6211.160white6.06335764597429
785.70.220.293.50.0427.0146.00.989993.170.3612.160white6.07159677523838
795.70.230.257.950.04216.0108.00.994863.440.6110.360white5.93636166782824
805.70.250.229.80.04950.0125.00.995713.20.4510.160white5.85518520662303
815.70.250.2711.50.0424.0120.00.994113.330.3110.860white5.87679791853243
825.70.260.2417.80.05923.0124.00.997733.30.510.150white5.68821541328788
835.70.280.282.20.01915.065.00.99023.060.5211.260white6.06959118516892
845.70.280.351.20.05239.0141.00.991083.440.6911.360white5.98418902612646
855.70.330.321.40.04328.093.00.98973.310.512.360white5.95552855131423
865.70.3850.0412.60.03422.0115.00.99643.280.639.960white5.67339991852795
875.70.410.211.90.04830.0112.00.991383.290.5511.260white5.80919926503794
885.70.430.35.70.03924.098.00.9923.540.6112.371white5.75714002419984
895.80.170.341.80.04596.0170.00.990353.380.911.881white6.14679990907853
905.80.190.2510.80.04233.0124.00.996463.220.419.260white5.93156540188983
915.80.20.161.40.04244.099.00.989123.230.3712.260white6.12318615380776
925.80.220.31.10.04736.0131.00.9923.260.4510.450white6.06498309925131
935.80.250.2613.10.05144.0148.00.99723.290.389.350white5.79246471922156
945.80.260.249.20.04455.0152.00.99613.310.389.450white5.86248222855137
955.80.270.27.30.0442.0145.00.994423.150.489.850white5.90206397636805
965.80.290.212.60.02512.0120.00.98943.390.7914.071white6.03815802407592
975.80.30.121.60.03657.0163.00.992393.380.5910.560white5.97027573909713
985.80.30.384.90.03922.086.00.989633.230.5813.171white5.96168013485221
995.80.310.317.50.05255.0230.00.99493.190.469.850white5.81754548262384
1005.80.310.324.50.02428.094.00.989063.250.5213.771white5.99926685662358
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Plots#

If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.

model.plot()

Important

The plotting feature is typically suitable for models with fewer than three predictors.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[3]: 
{'penalty': 'l2',
 'tol': 1e-06,
 'C': 1,
 'max_iter': 100,
 'solver': 'newton',
 'fit_intercept': True}

And to manually change some of the parameters:

model.set_params({'tol': 0.001})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The following methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL code by:

model.to_sql()
Out[5]: '3.62012395400961 + 0.000854676146389011 * "fixed_acidity" + -0.214652934764928 * "volatile_acidity" + 0.0108059402527516 * "citric_acid" + -0.00233383128248477 * "residual_sugar" + -0.475909981069208 * "chlorides" + -1.76777467013744 * "density"'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[7]: array([1.8231903])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, penalty: Literal['none', 'l2', None] = 'none', C: int | float | Decimal = 1.0, max_iter: int = 100, solver: Literal['newton'] = 'newton', fit_intercept: bool = True) None#

Methods

__init__([name, overwrite_model, tol, ...])

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

predict(vdf[, X, name, inplace])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

regression_report([metrics])

Computes a regression report

report([metrics])

Computes a regression report

score([metric])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes

object_type