Loading...

verticapy.machine_learning.vertica.linear_model.Lasso#

class verticapy.machine_learning.vertica.linear_model.Lasso(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: int | float | Decimal = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs', 'cgd'] = 'cgd', fit_intercept: bool = True)#

Creates a Lasso object using the Vertica Linear Regression algorithm. Lasso is a regularized regression method that uses an L1 penalty.

Parameters#

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

tol: float, optional

Determines whether the algorithm has reached the specified accuracy result.

C: PythonNumber, optional

The regularization parameter value. The value must be zero or non-negative.

max_iter: int, optional

Determines the maximum number of iterations the algorithm performs before achieving the specified accuracy result.

solver: str, optional

The optimizer method used to train the model.

  • newton:

    Newton Method.

  • bfgs:

    Broyden Fletcher Goldfarb Shanno.

  • cgd:

    Coordinate Gradient Descent.

fit_intercept: bool, optional

boolean, specifies whether the model includes an intercept. If set to False, no intercept is used in training the model. Note that setting fit_intercept to False does not work well with the BFGS optimizer.

Attributes#

Many attributes are created during the fitting phase.

coef_: numpy.array

The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.

intercept_: float

The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.

features_importance_: numpy.array

The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization#

First we import the Lasso model:

from verticapy.machine_learning.vertica import Lasso

Then we can create the model:

model = Lasso(
    tol = 1e-6,
    C = 0.5,
    max_iter = 100,
    solver = 'CGD',
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Metrics#

We can get the entire report using:

model.report()
value
explained_variance-7.105427357601e-15
max_error2.823711
median_absolute_error0.823711
mean_absolute_error0.689877813220599
mean_squared_error0.760454758484874
root_mean_squared_error0.872040571581893
r2-0.000933542050953973
r2_adj-0.00557465584717165
aic-342.10168135652
bic-306.067874999972
Rows: 1-10 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["mse", "r2"]).

For LinearModel, we can easily get the ANOVA table using:

model.report(metrics = "anova")
Df
SS
MS
F
p_value
Regression60.9227399433176340.1537899905529390.201146123957337140.9764792149463304
Residual1294989.3516407888210.7645685013823964
Total1300988.428900845503
Rows: 1-3 | Columns: 6

You can also use the LinearModel.score function to compute the R-squared value:

model.score()
Out[2]: -0.000933542050953973

Prediction#

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
14.20.170.361.80.02993.0161.00.989993.650.8912.071white5.823711
24.50.190.210.950.03389.0159.00.993323.340.428.050white5.823711
34.80.330.06.50.02834.0163.00.99373.350.619.950white5.823711
44.80.340.06.50.02833.0163.00.99393.360.619.960white5.823711
54.80.650.121.10.0134.010.00.992463.320.3613.540white5.823711
64.90.330.311.20.01639.0150.00.987133.330.5914.081white5.823711
74.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5.823711
84.90.420.02.10.04816.042.00.991543.710.7414.071red5.823711
94.90.470.171.90.03560.0148.00.989643.270.3511.560white5.823711
105.00.170.561.50.02624.0115.00.99063.480.3910.871white5.823711
115.00.2350.2711.750.0334.0118.00.99543.070.59.460white5.823711
125.00.240.195.00.04317.0101.00.994383.670.5710.050white5.823711
135.00.270.324.50.03258.0178.00.989563.450.3112.671white5.823711
145.00.270.324.50.03258.0178.00.989563.450.3112.671white5.823711
155.00.30.333.70.0354.0173.00.98873.360.313.071white5.823711
165.00.330.184.60.03240.0124.00.991143.180.411.060white5.823711
175.00.4550.181.90.03633.0106.00.987463.210.8314.071white5.823711
185.00.550.148.30.03235.0164.00.99183.530.5112.581white5.823711
195.01.020.041.40.04541.085.00.99383.750.4810.540red5.823711
205.10.110.321.60.02812.090.00.990083.570.5212.260white5.823711
215.10.1650.225.70.04742.0146.00.99343.180.559.960white5.823711
225.10.210.281.40.04748.0148.00.991683.50.4910.450white5.823711
235.10.30.32.30.04840.0150.00.989443.290.4612.260white5.823711
245.10.310.30.90.03728.0152.00.9923.540.5610.160white5.823711
255.10.510.182.10.04216.0101.00.99243.460.8712.971red5.823711
265.20.160.340.80.02926.077.00.991553.250.5110.160white5.823711
275.20.1850.221.00.0347.0123.00.992183.550.4410.1560white5.823711
285.20.20.273.20.04716.093.00.992353.440.5310.171white5.823711
295.20.280.291.10.02818.069.00.991683.240.5410.060white5.823711
305.20.310.22.40.02727.0117.00.988863.560.4513.071white5.823711
315.20.340.01.80.0527.063.00.99163.680.7914.060red5.823711
325.20.340.01.80.0527.063.00.99163.680.7914.060red5.823711
335.20.340.376.20.03142.0133.00.990763.250.4112.560white5.823711
345.20.360.021.60.03124.0104.00.98963.440.3512.260white5.823711
355.20.3650.0813.50.04137.0142.00.9973.460.399.960white5.823711
365.20.380.267.70.05320.0103.00.99253.270.4512.260white5.823711
375.20.480.041.60.05419.0106.00.99273.540.6212.271red5.823711
385.30.1650.241.10.05125.0105.00.99253.320.479.150white5.823711
395.30.330.31.20.04825.0119.00.990453.320.6211.360white5.823711
405.30.3950.071.30.03526.0102.00.9923.50.3510.660white5.823711
415.30.40.253.90.03145.0130.00.990723.310.5811.7571white5.823711
425.30.7150.191.50.1617.062.00.993953.620.6111.050red5.823711
435.40.290.381.20.02931.0132.00.988953.280.3612.460white5.823711
445.40.290.381.20.02931.0132.00.988953.280.3612.460white5.823711
455.40.290.473.00.05247.0145.00.9933.290.7510.060white5.823711
465.40.30.31.20.02925.093.00.987423.310.413.671white5.823711
475.40.310.473.00.05346.0144.00.99313.290.7610.050white5.823711
485.40.3750.43.30.05429.0147.00.994823.420.529.150white5.823711
495.40.460.152.10.02629.0130.00.989533.390.7713.481white5.823711
505.40.50.135.00.02812.0107.00.990793.480.8813.571white5.823711
515.40.530.162.70.03634.0128.00.988563.20.5313.281white5.823711
525.40.5950.12.80.04226.080.00.99323.360.389.350white5.823711
535.50.160.311.20.02631.068.00.98983.330.4411.633333333333360white5.823711
545.50.190.270.90.0452.0103.00.990263.50.3911.250white5.823711
555.50.280.211.60.03223.085.00.990273.420.4212.550white5.823711
565.50.310.293.00.02716.0102.00.990673.230.5611.260white5.823711
575.50.320.131.30.03745.0156.00.991843.260.3810.750white5.823711
585.50.350.351.10.04514.0167.00.9923.340.689.960white5.823711
595.50.4850.01.50.0658.0103.00.9943.630.49.740white5.823711
605.60.160.271.40.04453.0168.00.99183.280.3710.160white5.823711
615.60.180.311.50.03816.084.00.99243.340.5810.160white5.823711
625.60.180.581.250.03429.0129.00.989843.510.612.071white5.823711
635.60.1850.197.10.04836.0110.00.994383.260.419.560white5.823711
645.60.2550.5710.70.05666.0171.00.994643.250.6110.471white5.823711
655.60.260.265.70.03112.080.00.99233.250.3810.850white5.823711
665.60.260.2710.60.0327.0119.00.99473.40.3410.771white5.823711
675.60.320.328.30.04332.0105.00.992663.240.4711.260white5.823711
685.60.350.145.00.04648.0198.00.99373.30.7110.350white5.823711
695.60.350.46.30.02223.0174.00.99223.540.511.671white5.823711
705.60.50.092.30.04917.099.00.99373.630.6313.050red5.823711
715.60.540.041.70.0495.013.00.99423.720.5811.450red5.823711
725.70.120.265.50.03421.099.00.993243.090.579.960white5.823711
735.70.140.35.40.04526.0105.00.994693.320.459.350white5.823711
745.70.150.283.70.04557.0151.00.99133.220.2711.260white5.823711
755.70.180.224.20.04225.0111.00.9943.350.399.450white5.823711
765.70.210.242.30.04760.0189.00.9953.650.7210.160white5.823711
775.70.230.257.950.04216.0108.00.994863.440.6110.360white5.823711
785.70.2450.331.10.04928.0150.00.99273.130.429.350white5.823711
795.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.823711
805.70.270.169.00.05332.0111.00.994743.360.3710.460white5.823711
815.70.290.167.90.04448.0197.00.995123.210.369.450white5.823711
825.70.310.297.30.0533.0143.00.993323.310.511.066666666666760white5.823711
835.70.320.52.60.04917.0155.00.99273.220.6410.060white5.823711
845.70.390.254.90.03349.0113.00.989663.260.5813.171white5.823711
855.70.430.35.70.03924.098.00.9923.540.6112.371white5.823711
865.80.150.321.20.03714.0119.00.991373.190.510.260white5.823711
875.80.170.31.40.03755.0130.00.99093.290.3811.360white5.823711
885.80.190.241.30.04438.0128.00.993623.770.610.650white5.823711
895.80.190.2510.80.04233.0124.00.996463.220.419.260white5.823711
905.80.20.241.40.03365.0169.00.990433.590.5612.371white5.823711
915.80.20.271.40.03112.077.00.99053.250.3610.971white5.823711
925.80.220.290.90.03434.089.00.989363.140.3611.171white5.823711
935.80.220.31.10.04736.0131.00.9923.260.4510.450white5.823711
945.80.230.211.50.04421.0110.00.991383.30.5711.060white5.823711
955.80.240.2610.050.03963.0162.00.993753.330.511.260white5.823711
965.80.270.2212.70.05842.0206.00.99463.320.3812.360white5.823711
975.80.270.2712.30.04555.0170.00.99723.280.429.360white5.823711
985.80.280.272.60.05430.0156.00.99143.530.4212.450white5.823711
995.80.280.33.90.02636.0105.00.989633.260.5812.7560white5.823711
1005.80.290.151.10.02912.083.00.98983.30.411.460white5.823711
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Plots#

If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.

model.plot()

Important

The plotting feature is typically suitable for models with fewer than three predictors.

Contour plot is another useful plot that can be produced for models with two predictors.

model.contour()

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[3]: 
{'tol': 1e-06,
 'C': 0.5,
 'max_iter': 100,
 'solver': 'cgd',
 'fit_intercept': True}

And to manually change some of the parameters:

model.set_params({'tol': 0.001})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The following methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL code by:

model.to_sql()
Out[5]: '5.823711 + 0.0 * "fixed_acidity" + 0.0 * "volatile_acidity" + 0.0 * "citric_acid" + 0.0 * "residual_sugar" + 0.0 * "chlorides" + 0.0 * "density"'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[7]: array([5.823711])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: int | float | Decimal = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs', 'cgd'] = 'cgd', fit_intercept: bool = True) None#

Methods

__init__([name, overwrite_model, tol, C, ...])

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

predict(vdf[, X, name, inplace])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

regression_report([metrics])

Computes a regression report

report([metrics])

Computes a regression report

score([metric])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes