
verticapy.machine_learning.vertica.linear_model.Lasso¶
- class verticapy.machine_learning.vertica.linear_model.Lasso(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: Annotated[int | float | Decimal, 'Python Numbers'] = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs', 'cgd'] = 'cgd', fit_intercept: bool = True)¶
Creates a
Lasso
object using the Vertica Linear Regression algorithm. Lasso is a regularized regression method that uses anL1
penalty.Parameters¶
- name: str, optional
Name of the model. The model is stored in the database.
- overwrite_model: bool, optional
If set to
True
, training a model with the same name as an existing model overwrites the existing model.- tol: float, optional
Determines whether the algorithm has reached the specified accuracy result.
- C: PythonNumber, optional
The regularization parameter value. The value must be zero or non-negative.
- max_iter: int, optional
Determines the maximum number of iterations the algorithm performs before achieving the specified accuracy result.
- solver: str, optional
The optimizer method used to train the model.
- newton:
Newton Method.
- bfgs:
Broyden Fletcher Goldfarb Shanno.
- cgd:
Coordinate Gradient Descent.
- fit_intercept: bool, optional
boolean
, specifies whether the model includes an intercept. If set toFalse
, no intercept is used in training the model. Note that settingfit_intercept
toFalse
does not work well with the BFGS optimizer.
Attributes¶
Many attributes are created during the fitting phase.
- coef_: numpy.array
The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.
- intercept_: float
The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.
- features_importance_: numpy.array
The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the
features_importance()
method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.
Note
All attributes can be accessed using the
get_attributes()
method.Note
Several other attributes can be accessed by using the
get_vertica_attributes()
method.Examples¶
The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.
Load data for machine learning¶
We import
verticapy
:import verticapy as vp
Hint
By assigning an alias to
verticapy
, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions fromverticapy
are used as intended without interfering with functions from other libraries.For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Note
VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.
You can easily divide your dataset into training and testing subsets using the
vDataFrame.
train_test_split()
method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Warning
In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the
vDataFrame.
to_db()
method to save your results intotables
ortemporary tables
. This will help enhance the overall performance of the process.Model Initialization¶
First we import the
Lasso
model:from verticapy.machine_learning.vertica import Lasso
Then we can create the model:
model = Lasso( tol = 1e-6, C = 0.5, max_iter = 100, solver = 'CGD', )
Hint
In
verticapy
1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.Important
The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.
Model Training¶
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err |t_value |p_value ----------------+-----------+--------+--------+-------- Intercept | 5.80959 | 7.36935| 0.78834| 0.43053 fixed_acidity | 0.00000 | 0.01344| 0.00000| 1.00000 volatile_acidity| 0.00000 | 0.09532| 0.00000| 1.00000 citric_acid | 0.00000 | 0.10259| 0.00000| 1.00000 residual_sugar | 0.00000 | 0.00416| 0.00000| 1.00000 chlorides | 0.00000 | 0.40739| 0.00000| 1.00000 density | 0.00000 | 7.49632| 0.00000| 1.00000 ============== regularization ============== type| lambda ----+-------- l1 | 0.50000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_0c72e7a455a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_0c83b6ec55a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='cgd', epsilon=1e-06, max_iterations=100, regularization='l1', lambda=0.5, alpha=1, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5194
Important
To train a model, you can directly use the
vDataFrame
or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. Inverticapy
, we don’t work usingX
matrices andy
vectors. Instead, we work directly with lists of predictors and the response name.Metrics¶
We can get the entire report using:
model.report()
value explained_variance -8.88178419700125e-16 max_error 3.190412 median_absolute_error 0.809588 mean_absolute_error 0.693801746738296 mean_squared_error 0.790103710557507 root_mean_squared_error 0.888877781563645 r2 -0.00243702713373573 r2_adj -0.007077939296392 aic -292.812992862613 bic -256.768182984902 Rows: 1-10 | Columns: 2Important
Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g.
model.report(metrics = ["mse", "r2"])
.For
LinearModel
, we can easily get the ANOVA table using:model.report(metrics = "anova")
Df SS MS F p_value Regression 6 2.50283247730738 0.41713874621789665 0.5251181337466425 0.7895760685660886 Residual 1296 1029.50513485643 0.794371246031196 Total 1302 1027.00230237913 Rows: 1-3 | Columns: 6You can also use the
LinearModel.score
function to compute the R-squared value:model.score() Out[2]: -0.00243702713373573
Prediction¶
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 5.809588 2 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 5.809588 3 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 5.809588 4 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 5.809588 5 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 5.809588 6 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 5.809588 7 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 5.809588 8 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 5.809588 9 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 5.809588 10 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 5.809588 11 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 5.809588 12 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 5.809588 13 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.809588 14 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 5.809588 15 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 5.809588 16 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 5.809588 17 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 5.809588 18 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 5.809588 19 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 5.809588 20 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white 5.809588 21 5.2 0.285 0.29 5.15 0.035 64.0 138.0 0.9895 3.19 0.34 12.4 8 1 white 5.809588 22 5.2 0.31 0.36 5.1 0.031 46.0 145.0 0.9897 3.14 0.31 12.4 7 1 white 5.809588 23 5.2 0.32 0.25 1.8 0.103 13.0 50.0 0.9957 3.38 0.55 9.2 5 0 red 5.809588 24 5.2 0.44 0.04 1.4 0.036 43.0 119.0 0.9894 3.36 0.33 12.1 8 1 white 5.809588 25 5.2 0.49 0.26 2.3 0.09 23.0 74.0 0.9953 3.71 0.62 12.2 6 0 red 5.809588 26 5.3 0.16 0.39 1.0 0.028 40.0 101.0 0.99156 3.57 0.59 10.6 6 0 white 5.809588 27 5.3 0.165 0.24 1.1 0.051 25.0 105.0 0.9925 3.32 0.47 9.1 5 0 white 5.809588 28 5.3 0.21 0.29 0.7 0.028 11.0 66.0 0.99215 3.3 0.4 9.8 5 0 white 5.809588 29 5.3 0.275 0.24 7.4 0.038 28.0 114.0 0.99313 3.38 0.51 11.0 6 0 white 5.809588 30 5.3 0.3 0.3 1.2 0.029 25.0 93.0 0.98742 3.31 0.4 13.6 7 1 white 5.809588 31 5.3 0.33 0.3 1.2 0.048 25.0 119.0 0.99045 3.32 0.62 11.3 6 0 white 5.809588 32 5.3 0.585 0.07 7.1 0.044 34.0 145.0 0.9945 3.34 0.57 9.7 6 0 white 5.809588 33 5.3 0.715 0.19 1.5 0.161 7.0 62.0 0.99395 3.62 0.61 11.0 5 0 red 5.809588 34 5.4 0.15 0.32 2.5 0.037 10.0 51.0 0.98878 3.04 0.58 12.6 6 0 white 5.809588 35 5.4 0.23 0.36 1.5 0.03 74.0 121.0 0.98976 3.24 0.99 12.1 7 1 white 5.809588 36 5.4 0.265 0.28 7.8 0.052 27.0 91.0 0.99432 3.19 0.38 10.4 6 0 white 5.809588 37 5.4 0.29 0.47 3.0 0.052 47.0 145.0 0.993 3.29 0.75 10.0 6 0 white 5.809588 38 5.4 0.415 0.19 1.6 0.039 27.0 88.0 0.99265 3.54 0.41 10.0 7 1 white 5.809588 39 5.4 0.45 0.27 6.4 0.033 20.0 102.0 0.98944 3.22 0.27 13.4 8 1 white 5.809588 40 5.4 0.46 0.15 2.1 0.026 29.0 130.0 0.98953 3.39 0.77 13.4 8 1 white 5.809588 41 5.4 0.53 0.16 2.7 0.036 34.0 128.0 0.98856 3.2 0.53 13.2 8 1 white 5.809588 42 5.4 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 5.809588 43 5.5 0.12 0.33 1.0 0.038 23.0 131.0 0.99164 3.25 0.45 9.8 5 0 white 5.809588 44 5.5 0.16 0.26 1.5 0.032 35.0 100.0 0.99076 3.43 0.77 12.0 6 0 white 5.809588 45 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.65 6 0 white 5.809588 46 5.5 0.16 0.31 1.2 0.026 31.0 68.0 0.9898 3.33 0.44 11.6333333333333 6 0 white 5.809588 47 5.5 0.17 0.23 2.9 0.039 10.0 108.0 0.99243 3.28 0.5 10.0 5 0 white 5.809588 48 5.5 0.24 0.45 1.7 0.046 22.0 113.0 0.99224 3.22 0.48 10.0 5 0 white 5.809588 49 5.5 0.335 0.3 2.5 0.071 27.0 128.0 0.9924 3.14 0.51 9.6 6 0 white 5.809588 50 5.5 0.42 0.09 1.6 0.019 18.0 68.0 0.9906 3.33 0.51 11.4 7 1 white 5.809588 51 5.5 0.485 0.0 1.5 0.065 8.0 103.0 0.994 3.63 0.4 9.7 4 0 white 5.809588 52 5.6 0.12 0.33 2.9 0.044 21.0 73.0 0.98896 3.17 0.32 12.9 8 1 white 5.809588 53 5.6 0.16 0.27 1.4 0.044 53.0 168.0 0.9918 3.28 0.37 10.1 6 0 white 5.809588 54 5.6 0.18 0.27 1.7 0.03 31.0 103.0 0.98892 3.35 0.37 12.9 6 0 white 5.809588 55 5.6 0.18 0.58 1.25 0.034 29.0 129.0 0.98984 3.51 0.6 12.0 7 1 white 5.809588 56 5.6 0.185 0.19 7.1 0.048 36.0 110.0 0.99438 3.26 0.41 9.5 6 0 white 5.809588 57 5.6 0.19 0.26 1.4 0.03 12.0 76.0 0.9905 3.25 0.37 10.9 7 1 white 5.809588 58 5.6 0.23 0.25 8.0 0.043 31.0 101.0 0.99429 3.19 0.42 10.4 6 0 white 5.809588 59 5.6 0.26 0.18 1.4 0.034 18.0 135.0 0.99174 3.32 0.35 10.2 6 0 white 5.809588 60 5.6 0.35 0.37 1.0 0.038 6.0 72.0 0.9902 3.37 0.34 11.4 5 0 white 5.809588 61 5.6 0.49 0.13 4.5 0.039 17.0 116.0 0.9907 3.42 0.9 13.7 7 1 white 5.809588 62 5.6 0.5 0.09 2.3 0.049 17.0 99.0 0.9937 3.63 0.63 13.0 5 0 red 5.809588 63 5.6 0.605 0.05 2.4 0.073 19.0 25.0 0.99258 3.56 0.55 12.9 5 0 red 5.809588 64 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 5.809588 65 5.7 0.16 0.26 6.3 0.043 28.0 113.0 0.9936 3.06 0.58 9.9 6 0 white 5.809588 66 5.7 0.16 0.32 1.2 0.036 7.0 89.0 0.99111 3.26 0.48 11.0 5 0 white 5.809588 67 5.7 0.21 0.24 2.3 0.047 60.0 189.0 0.995 3.65 0.72 10.1 6 0 white 5.809588 68 5.7 0.21 0.25 1.1 0.035 26.0 81.0 0.9902 3.31 0.52 11.4 6 0 white 5.809588 69 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 5.809588 70 5.7 0.22 0.25 1.1 0.05 97.0 175.0 0.99099 3.44 0.62 11.1 6 0 white 5.809588 71 5.7 0.22 0.33 1.9 0.036 37.0 110.0 0.98945 3.26 0.58 12.4 6 0 white 5.809588 72 5.7 0.25 0.27 10.8 0.05 58.0 116.0 0.99592 3.1 0.5 9.8 6 0 white 5.809588 73 5.7 0.27 0.32 1.2 0.046 20.0 155.0 0.9934 3.8 0.41 10.2 6 0 white 5.809588 74 5.7 0.28 0.35 1.2 0.052 39.0 141.0 0.99108 3.44 0.69 11.3 6 0 white 5.809588 75 5.7 0.28 0.36 1.8 0.041 38.0 90.0 0.99002 3.27 0.98 11.9 7 1 white 5.809588 76 5.7 0.39 0.25 4.9 0.033 49.0 113.0 0.98966 3.26 0.58 13.1 7 1 white 5.809588 77 5.7 0.41 0.21 1.9 0.048 30.0 112.0 0.99138 3.29 0.55 11.2 6 0 white 5.809588 78 5.7 0.695 0.06 6.8 0.042 9.0 84.0 0.99432 3.44 0.44 10.2 5 0 white 5.809588 79 5.8 0.12 0.21 1.3 0.056 35.0 121.0 0.9908 3.32 0.33 11.4 6 0 white 5.809588 80 5.8 0.14 0.15 6.1 0.042 27.0 123.0 0.99362 3.06 0.6 9.9 6 0 white 5.809588 81 5.8 0.15 0.28 0.8 0.037 43.0 127.0 0.99198 3.24 0.51 9.3 5 0 white 5.809588 82 5.8 0.18 0.37 1.1 0.036 31.0 96.0 0.98942 3.16 0.48 12.0 6 0 white 5.809588 83 5.8 0.18 0.37 1.2 0.036 19.0 74.0 0.98853 3.09 0.49 12.7 7 1 white 5.809588 84 5.8 0.19 0.25 10.8 0.042 33.0 124.0 0.99646 3.22 0.41 9.2 6 0 white 5.809588 85 5.8 0.19 0.33 4.2 0.038 49.0 133.0 0.99107 3.16 0.42 11.3 7 1 white 5.809588 86 5.8 0.2 0.24 1.4 0.033 65.0 169.0 0.99043 3.59 0.56 12.3 7 1 white 5.809588 87 5.8 0.2 0.27 1.4 0.031 12.0 77.0 0.9905 3.25 0.36 10.9 7 1 white 5.809588 88 5.8 0.22 0.25 1.5 0.024 21.0 109.0 0.99234 3.37 0.58 10.4 6 0 white 5.809588 89 5.8 0.23 0.21 1.5 0.044 21.0 110.0 0.99138 3.3 0.57 11.0 6 0 white 5.809588 90 5.8 0.25 0.24 13.3 0.044 41.0 137.0 0.9972 3.34 0.42 9.5 5 0 white 5.809588 91 5.8 0.26 0.18 1.2 0.031 40.0 114.0 0.9908 3.42 0.4 11.0 7 1 white 5.809588 92 5.8 0.27 0.2 7.3 0.04 42.0 145.0 0.99442 3.15 0.48 9.8 5 0 white 5.809588 93 5.8 0.27 0.27 12.3 0.045 55.0 170.0 0.9972 3.28 0.42 9.3 6 0 white 5.809588 94 5.8 0.275 0.3 5.4 0.043 41.0 149.0 0.9926 3.33 0.42 10.8 7 1 white 5.809588 95 5.8 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 5.809588 96 5.8 0.28 0.35 2.3 0.053 36.0 114.0 0.9924 3.28 0.5 10.2 4 0 white 5.809588 97 5.8 0.29 0.38 10.7 0.038 49.0 136.0 0.99366 3.11 0.59 11.2 6 0 white 5.809588 98 5.8 0.3 0.27 1.7 0.014 45.0 104.0 0.98914 3.4 0.56 12.6 7 1 white 5.809588 99 5.8 0.31 0.32 4.5 0.024 28.0 94.0 0.98906 3.25 0.52 13.7 7 1 white 5.809588 100 5.8 0.32 0.23 1.5 0.033 39.0 121.0 0.9887 2.96 0.35 12.0 5 0 white 5.809588 Rows: 1-100 | Columns: 15Note
Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the
vDataFrame
to thepredict()
function, but in this case, it’s essential that the column names of thevDataFrame
match the predictors and response name in the model.Plots¶
If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.
model.plot()
Important
The plotting feature is typically suitable for models with fewer than three predictors.
Contour plot is another useful plot that can be produced for models with two predictors.
model.contour()
Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.
Parameter Modification¶
In order to see the parameters:
model.get_params() Out[3]: {'tol': 1e-06, 'C': 0.5, 'max_iter': 100, 'solver': 'cgd', 'fit_intercept': True}
And to manually change some of the parameters:
model.set_params({'tol': 0.001})
Model Register¶
In order to register the model for tracking and versioning:
model.register("model_v1")
Please refer to Model Tracking and Versioning for more details on model tracking and versioning.
Model Exporting¶
To Memmodel
model.to_memmodel()
Note
MemModel
objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle ascikit-learn
model.The following methods for exporting the model use
MemModel
, and it is recommended to useMemModel
directly.To SQL
You can get the SQL code by:
model.to_sql() Out[5]: '5.809588 + 0.0 * "fixed_acidity" + 0.0 * "volatile_acidity" + 0.0 * "citric_acid" + 0.0 * "residual_sugar" + 0.0 * "chlorides" + 0.0 * "density"'
To Python
To obtain the prediction function in Python syntax, use the following code:
X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]] model.to_python()(X) Out[7]: array([5.809588])
Hint
The
to_python()
method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.- __init__(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: Annotated[int | float | Decimal, 'Python Numbers'] = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs', 'cgd'] = 'cgd', fit_intercept: bool = True) None ¶
Methods
__init__
([name, overwrite_model, tol, C, ...])contour
([nbins, chart])Draws the model's contour plot.
deploySQL
([X])Returns the SQL code needed to deploy the model.
does_model_exists
(name[, raise_error, ...])Checks whether the model is stored in the Vertica database.
drop
()Drops the model from the Vertica database.
export_models
(name, path[, kind])Exports machine learning models.
features_importance
([show, chart])Computes the model's features importance.
fit
(input_relation, X, y[, test_relation, ...])Trains the model.
get_attributes
([attr_name])Returns the model attributes.
get_match_index
(x, col_list[, str_check])Returns the matching index.
Returns the parameters of the model.
get_plotting_lib
([class_name, chart, ...])Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.
get_vertica_attributes
([attr_name])Returns the model Vertica attributes.
import_models
(path[, schema, kind])Imports machine learning models.
plot
([max_nb_points, chart])Draws the model.
predict
(vdf[, X, name, inplace])Predicts using the input relation.
register
(registered_name[, raise_error])Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.
regression_report
([metrics])Computes a regression report
report
([metrics])Computes a regression report
score
([metric])Computes the model score.
set_params
([parameters])Sets the parameters of the model.
Summarizes the model.
to_binary
(path)Exports the model to the Vertica Binary format.
Converts the model to an InMemory object that can be used for different types of predictions.
to_pmml
(path)Exports the model to PMML.
to_python
([return_proba, ...])Returns the Python function needed for in-memory scoring without using built-in Vertica functions.
to_sql
([X, return_proba, ...])Returns the SQL code needed to deploy the model without using built-in Vertica functions.
to_tf
(path)Exports the model to the Frozen Graph format (TensorFlow).
Attributes