Loading...

verticapy.machine_learning.vertica.naive_bayes.NaiveBayes.predict_proba

NaiveBayes.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame

Returns the model’s probabilities using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and “SELECT 1” are invalid.

X: SQLColumns, optional

List of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added vDataColumn. If empty, a name is generated.

pos_label: PythonScalar, optional

Class label. For binary classification, this can be either 1 or 0.

inplace: bool, optional

If set to True, the prediction is added to the vDataFrame.

Returns

vDataFrame

the input object.

Examples

For this example, we will use the Iris dataset.

import verticapy.datasets as vpd

data = vpd.load_iris()

train, test = data.train_test_split(test_size = 0.2)
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
13.34.55.67.8Iris-setosa
23.34.55.67.8Iris-setosa
33.34.55.67.8Iris-setosa
43.34.55.67.8Iris-setosa
53.34.55.67.8Iris-setosa
63.34.55.67.8Iris-setosa
73.34.55.67.8Iris-setosa
83.34.55.67.8Iris-setosa
93.34.55.67.8Iris-setosa
103.34.55.67.8Iris-setosa
113.34.55.67.8Iris-setosa
123.34.55.67.8Iris-setosa
133.34.55.67.8Iris-setosa
143.34.55.67.8Iris-setosa
153.34.55.67.8Iris-setosa
163.34.55.67.8Iris-setosa
173.34.55.67.8Iris-setosa
183.34.55.67.8Iris-setosa
193.34.55.67.8Iris-setosa
203.34.55.67.8Iris-setosa
213.34.55.67.8Iris-setosa
223.34.55.67.8Iris-setosa
233.34.55.67.8Iris-setosa
243.34.55.67.8Iris-setosa
253.34.55.67.8Iris-setosa
263.34.55.67.8Iris-setosa
274.33.01.10.1Iris-setosa
284.34.79.61.8Iris-virginica
294.34.79.61.8Iris-virginica
304.34.79.61.8Iris-virginica
314.34.79.61.8Iris-virginica
324.34.79.61.8Iris-virginica
334.34.79.61.8Iris-virginica
344.34.79.61.8Iris-virginica
354.34.79.61.8Iris-virginica
364.34.79.61.8Iris-virginica
374.34.79.61.8Iris-virginica
384.34.79.61.8Iris-virginica
394.34.79.61.8Iris-virginica
404.34.79.61.8Iris-virginica
414.34.79.61.8Iris-virginica
424.34.79.61.8Iris-virginica
434.34.79.61.8Iris-virginica
444.34.79.61.8Iris-virginica
454.34.79.61.8Iris-virginica
464.34.79.61.8Iris-virginica
474.34.79.61.8Iris-virginica
484.34.79.61.8Iris-virginica
494.34.79.61.8Iris-virginica
504.34.79.61.8Iris-virginica
514.34.79.61.8Iris-virginica
524.34.79.61.8Iris-virginica
534.34.79.61.8Iris-virginica
544.42.91.40.2Iris-setosa
554.43.01.30.2Iris-setosa
564.43.21.30.2Iris-setosa
574.52.31.30.3Iris-setosa
584.63.11.50.2Iris-setosa
594.63.21.40.2Iris-setosa
604.63.41.40.3Iris-setosa
614.63.61.00.2Iris-setosa
624.73.21.30.2Iris-setosa
634.73.21.60.2Iris-setosa
644.83.01.40.1Iris-setosa
654.83.01.40.3Iris-setosa
664.83.11.60.2Iris-setosa
674.83.41.60.2Iris-setosa
684.83.41.90.2Iris-setosa
694.92.43.31.0Iris-versicolor
704.92.54.51.7Iris-virginica
714.93.01.40.2Iris-setosa
724.93.11.50.1Iris-setosa
734.93.11.50.1Iris-setosa
744.93.11.50.1Iris-setosa
755.02.03.51.0Iris-versicolor
765.02.33.31.0Iris-versicolor
775.03.01.60.2Iris-setosa
785.03.21.20.2Iris-setosa
795.03.31.40.2Iris-setosa
805.03.41.50.2Iris-setosa
815.03.41.60.4Iris-setosa
825.03.51.30.3Iris-setosa
835.03.51.60.6Iris-setosa
845.03.61.40.2Iris-setosa
855.12.53.01.1Iris-versicolor
865.13.31.70.5Iris-setosa
875.13.41.50.2Iris-setosa
885.13.51.40.2Iris-setosa
895.13.51.40.3Iris-setosa
905.13.71.50.4Iris-setosa
915.13.81.50.3Iris-setosa
925.13.81.60.2Iris-setosa
935.13.81.90.4Iris-setosa
945.22.73.91.4Iris-versicolor
955.23.41.40.2Iris-setosa
965.23.51.50.2Iris-setosa
975.24.11.50.1Iris-setosa
985.33.71.50.2Iris-setosa
995.43.04.51.5Iris-versicolor
1005.43.41.50.4Iris-setosa
Rows: 1-100 | Columns: 5

Let’s import the model:

from verticapy.machine_learning.vertica import NearestCentroid

Then we can create the model:

model = NearestCentroid(p = 2)

We can now fit the model:

model.fit(
    train,
    [
        "SepalLengthCm",
        "SepalWidthCm",
        "PetalLengthCm",
        "PetalWidthCm",
    ],
    "Species",
    test,
)

We can then get the prediction:

model.predict_proba(test, name = "prediction"
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
123
prediction_irissetosa
Float(22)
123
prediction_irisversicolor
Float(22)
123
prediction_irisvirginica
Float(22)
13.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
23.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
33.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
43.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
53.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
64.34.79.61.8Iris-virginica0.2231123514565850.2527425297583570.524145118785058
74.34.79.61.8Iris-virginica0.2231123514565850.2527425297583570.524145118785058
84.34.79.61.8Iris-virginica0.2231123514565850.2527425297583570.524145118785058
94.34.79.61.8Iris-virginica0.2231123514565850.2527425297583570.524145118785058
104.34.79.61.8Iris-virginica0.2231123514565850.2527425297583570.524145118785058
114.52.31.30.3Iris-setosa0.3744724961684370.4063018237977170.219225680033846
124.63.41.40.3Iris-setosa0.3897762626144420.3945672444070770.215656492978481
134.83.01.40.1Iris-setosa0.3702957931887480.4109957424811860.218708464330066
144.83.11.60.2Iris-setosa0.3706614227592950.4142533041693750.21508527307133
155.13.81.60.2Iris-setosa0.3746229085703310.407475331994360.21790175943531
165.23.51.50.2Iris-setosa0.3690344562251220.4143113496636260.216654194111253
175.33.71.50.2Iris-setosa0.3696687085915190.4122603960766390.218070895331842
185.43.41.70.2Iris-setosa0.3555651834490730.4297177984300070.21471701812092
195.43.71.50.2Iris-setosa0.3668723482555090.4148032242489540.218324427495537
205.52.43.71.0Iris-versicolor0.1915978861869240.6629126863104770.145489427502599
215.52.64.41.2Iris-versicolor0.1265522908774960.7548179327215850.118629776400919
225.53.51.30.2Iris-setosa0.3658639567427570.4150656044918070.219070438765436
235.62.53.91.1Iris-versicolor0.1491407363796660.7314739149140730.119385348706261
245.82.74.11.0Iris-versicolor0.1033937337226470.8044628175800410.0921434486973117
255.82.85.12.4Iris-virginica0.2352630348999920.4878178408800430.276919124219965
265.93.04.21.5Iris-versicolor0.09144960414478980.8304759764926330.0780744193625772
275.93.05.11.8Iris-virginica0.1853033509409060.5694122796384660.245284369420628
286.03.04.81.8Iris-virginica0.1674830524259640.6447730330872840.187743914486752
296.03.44.51.6Iris-versicolor0.174747334755440.6547099259381810.170542739306379
306.32.55.01.9Iris-virginica0.1826359175923450.5879711703490190.229392912058636
316.33.36.02.5Iris-virginica0.2033027467039530.3363775924224320.460319660873615
326.42.75.31.9Iris-virginica0.1908626630608120.5238844530939870.285252883845201
336.42.85.62.2Iris-virginica0.2052921909180950.4405591249414870.354148684140418
346.52.84.61.5Iris-versicolor0.14355024031590.6961750399721060.160274719711994
356.53.25.12.0Iris-virginica0.2043428338052530.5169449427104080.278712223484339
366.73.35.72.1Iris-virginica0.2040955833235980.4056109809711130.390293435705288
377.03.24.71.4Iris-versicolor0.1929619364923670.5713326515833990.235705411924233
387.32.96.31.8Iris-virginica0.1957817027513920.3671448525898760.437073444658731
397.73.06.12.3Iris-virginica0.2185718681337830.3741643500293410.407263781836876
407.93.86.42.0Iris-virginica0.215510108229540.3424035988511670.442086292919293
413.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
424.34.79.61.8Iris-virginica0.2231123514565850.2527425297583570.524145118785058
433.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
443.34.55.67.8Iris-setosa0.3928326078940580.2875079923695730.319659399736369
Rows: 1-44 | Columns: 8

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.