
verticapy.machine_learning.vertica.naive_bayes.NaiveBayes.predict_proba¶
- NaiveBayes.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame ¶
Returns the model’s probabilities using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
and “SELECT 1” are invalid.- X: SQLColumns, optional
List of the columns used to deploy the models. If empty, the model predictors are used.
- name: str, optional
Name of the added vDataColumn. If empty, a name is generated.
- pos_label: PythonScalar, optional
Class label. For binary classification, this can be either 1 or 0.
- inplace: bool, optional
If set to True, the prediction is added to the vDataFrame.
Returns¶
- vDataFrame
the input object.
Examples¶
For this example, we will use the Iris dataset.
import verticapy.datasets as vpd data = vpd.load_iris() train, test = data.train_test_split(test_size = 0.2)
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies1 3.3 4.5 5.6 7.8 Iris-setosa 2 3.3 4.5 5.6 7.8 Iris-setosa 3 3.3 4.5 5.6 7.8 Iris-setosa 4 3.3 4.5 5.6 7.8 Iris-setosa 5 3.3 4.5 5.6 7.8 Iris-setosa 6 3.3 4.5 5.6 7.8 Iris-setosa 7 3.3 4.5 5.6 7.8 Iris-setosa 8 3.3 4.5 5.6 7.8 Iris-setosa 9 3.3 4.5 5.6 7.8 Iris-setosa 10 3.3 4.5 5.6 7.8 Iris-setosa 11 3.3 4.5 5.6 7.8 Iris-setosa 12 3.3 4.5 5.6 7.8 Iris-setosa 13 3.3 4.5 5.6 7.8 Iris-setosa 14 3.3 4.5 5.6 7.8 Iris-setosa 15 3.3 4.5 5.6 7.8 Iris-setosa 16 3.3 4.5 5.6 7.8 Iris-setosa 17 3.3 4.5 5.6 7.8 Iris-setosa 18 3.3 4.5 5.6 7.8 Iris-setosa 19 3.3 4.5 5.6 7.8 Iris-setosa 20 3.3 4.5 5.6 7.8 Iris-setosa 21 3.3 4.5 5.6 7.8 Iris-setosa 22 3.3 4.5 5.6 7.8 Iris-setosa 23 3.3 4.5 5.6 7.8 Iris-setosa 24 3.3 4.5 5.6 7.8 Iris-setosa 25 3.3 4.5 5.6 7.8 Iris-setosa 26 3.3 4.5 5.6 7.8 Iris-setosa 27 4.3 3.0 1.1 0.1 Iris-setosa 28 4.3 4.7 9.6 1.8 Iris-virginica 29 4.3 4.7 9.6 1.8 Iris-virginica 30 4.3 4.7 9.6 1.8 Iris-virginica 31 4.3 4.7 9.6 1.8 Iris-virginica 32 4.3 4.7 9.6 1.8 Iris-virginica 33 4.3 4.7 9.6 1.8 Iris-virginica 34 4.3 4.7 9.6 1.8 Iris-virginica 35 4.3 4.7 9.6 1.8 Iris-virginica 36 4.3 4.7 9.6 1.8 Iris-virginica 37 4.3 4.7 9.6 1.8 Iris-virginica 38 4.3 4.7 9.6 1.8 Iris-virginica 39 4.3 4.7 9.6 1.8 Iris-virginica 40 4.3 4.7 9.6 1.8 Iris-virginica 41 4.3 4.7 9.6 1.8 Iris-virginica 42 4.3 4.7 9.6 1.8 Iris-virginica 43 4.3 4.7 9.6 1.8 Iris-virginica 44 4.3 4.7 9.6 1.8 Iris-virginica 45 4.3 4.7 9.6 1.8 Iris-virginica 46 4.3 4.7 9.6 1.8 Iris-virginica 47 4.3 4.7 9.6 1.8 Iris-virginica 48 4.3 4.7 9.6 1.8 Iris-virginica 49 4.3 4.7 9.6 1.8 Iris-virginica 50 4.3 4.7 9.6 1.8 Iris-virginica 51 4.3 4.7 9.6 1.8 Iris-virginica 52 4.3 4.7 9.6 1.8 Iris-virginica 53 4.3 4.7 9.6 1.8 Iris-virginica 54 4.4 2.9 1.4 0.2 Iris-setosa 55 4.4 3.0 1.3 0.2 Iris-setosa 56 4.4 3.2 1.3 0.2 Iris-setosa 57 4.5 2.3 1.3 0.3 Iris-setosa 58 4.6 3.1 1.5 0.2 Iris-setosa 59 4.6 3.2 1.4 0.2 Iris-setosa 60 4.6 3.4 1.4 0.3 Iris-setosa 61 4.6 3.6 1.0 0.2 Iris-setosa 62 4.7 3.2 1.3 0.2 Iris-setosa 63 4.7 3.2 1.6 0.2 Iris-setosa 64 4.8 3.0 1.4 0.1 Iris-setosa 65 4.8 3.0 1.4 0.3 Iris-setosa 66 4.8 3.1 1.6 0.2 Iris-setosa 67 4.8 3.4 1.6 0.2 Iris-setosa 68 4.8 3.4 1.9 0.2 Iris-setosa 69 4.9 2.4 3.3 1.0 Iris-versicolor 70 4.9 2.5 4.5 1.7 Iris-virginica 71 4.9 3.0 1.4 0.2 Iris-setosa 72 4.9 3.1 1.5 0.1 Iris-setosa 73 4.9 3.1 1.5 0.1 Iris-setosa 74 4.9 3.1 1.5 0.1 Iris-setosa 75 5.0 2.0 3.5 1.0 Iris-versicolor 76 5.0 2.3 3.3 1.0 Iris-versicolor 77 5.0 3.0 1.6 0.2 Iris-setosa 78 5.0 3.2 1.2 0.2 Iris-setosa 79 5.0 3.3 1.4 0.2 Iris-setosa 80 5.0 3.4 1.5 0.2 Iris-setosa 81 5.0 3.4 1.6 0.4 Iris-setosa 82 5.0 3.5 1.3 0.3 Iris-setosa 83 5.0 3.5 1.6 0.6 Iris-setosa 84 5.0 3.6 1.4 0.2 Iris-setosa 85 5.1 2.5 3.0 1.1 Iris-versicolor 86 5.1 3.3 1.7 0.5 Iris-setosa 87 5.1 3.4 1.5 0.2 Iris-setosa 88 5.1 3.5 1.4 0.2 Iris-setosa 89 5.1 3.5 1.4 0.3 Iris-setosa 90 5.1 3.7 1.5 0.4 Iris-setosa 91 5.1 3.8 1.5 0.3 Iris-setosa 92 5.1 3.8 1.6 0.2 Iris-setosa 93 5.1 3.8 1.9 0.4 Iris-setosa 94 5.2 2.7 3.9 1.4 Iris-versicolor 95 5.2 3.4 1.4 0.2 Iris-setosa 96 5.2 3.5 1.5 0.2 Iris-setosa 97 5.2 4.1 1.5 0.1 Iris-setosa 98 5.3 3.7 1.5 0.2 Iris-setosa 99 5.4 3.0 4.5 1.5 Iris-versicolor 100 5.4 3.4 1.5 0.4 Iris-setosa Rows: 1-100 | Columns: 5Let’s import the model:
from verticapy.machine_learning.vertica import NearestCentroid
Then we can create the model:
model = NearestCentroid(p = 2)
We can now fit the model:
model.fit( train, [ "SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm", ], "Species", test, )
We can then get the prediction:
model.predict_proba(test, name = "prediction"
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies123prediction_irissetosa123prediction_irisversicolor123prediction_irisvirginica1 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 2 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 3 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 4 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 5 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 6 4.3 4.7 9.6 1.8 Iris-virginica 0.223112351456585 0.252742529758357 0.524145118785058 7 4.3 4.7 9.6 1.8 Iris-virginica 0.223112351456585 0.252742529758357 0.524145118785058 8 4.3 4.7 9.6 1.8 Iris-virginica 0.223112351456585 0.252742529758357 0.524145118785058 9 4.3 4.7 9.6 1.8 Iris-virginica 0.223112351456585 0.252742529758357 0.524145118785058 10 4.3 4.7 9.6 1.8 Iris-virginica 0.223112351456585 0.252742529758357 0.524145118785058 11 4.5 2.3 1.3 0.3 Iris-setosa 0.374472496168437 0.406301823797717 0.219225680033846 12 4.6 3.4 1.4 0.3 Iris-setosa 0.389776262614442 0.394567244407077 0.215656492978481 13 4.8 3.0 1.4 0.1 Iris-setosa 0.370295793188748 0.410995742481186 0.218708464330066 14 4.8 3.1 1.6 0.2 Iris-setosa 0.370661422759295 0.414253304169375 0.21508527307133 15 5.1 3.8 1.6 0.2 Iris-setosa 0.374622908570331 0.40747533199436 0.21790175943531 16 5.2 3.5 1.5 0.2 Iris-setosa 0.369034456225122 0.414311349663626 0.216654194111253 17 5.3 3.7 1.5 0.2 Iris-setosa 0.369668708591519 0.412260396076639 0.218070895331842 18 5.4 3.4 1.7 0.2 Iris-setosa 0.355565183449073 0.429717798430007 0.21471701812092 19 5.4 3.7 1.5 0.2 Iris-setosa 0.366872348255509 0.414803224248954 0.218324427495537 20 5.5 2.4 3.7 1.0 Iris-versicolor 0.191597886186924 0.662912686310477 0.145489427502599 21 5.5 2.6 4.4 1.2 Iris-versicolor 0.126552290877496 0.754817932721585 0.118629776400919 22 5.5 3.5 1.3 0.2 Iris-setosa 0.365863956742757 0.415065604491807 0.219070438765436 23 5.6 2.5 3.9 1.1 Iris-versicolor 0.149140736379666 0.731473914914073 0.119385348706261 24 5.8 2.7 4.1 1.0 Iris-versicolor 0.103393733722647 0.804462817580041 0.0921434486973117 25 5.8 2.8 5.1 2.4 Iris-virginica 0.235263034899992 0.487817840880043 0.276919124219965 26 5.9 3.0 4.2 1.5 Iris-versicolor 0.0914496041447898 0.830475976492633 0.0780744193625772 27 5.9 3.0 5.1 1.8 Iris-virginica 0.185303350940906 0.569412279638466 0.245284369420628 28 6.0 3.0 4.8 1.8 Iris-virginica 0.167483052425964 0.644773033087284 0.187743914486752 29 6.0 3.4 4.5 1.6 Iris-versicolor 0.17474733475544 0.654709925938181 0.170542739306379 30 6.3 2.5 5.0 1.9 Iris-virginica 0.182635917592345 0.587971170349019 0.229392912058636 31 6.3 3.3 6.0 2.5 Iris-virginica 0.203302746703953 0.336377592422432 0.460319660873615 32 6.4 2.7 5.3 1.9 Iris-virginica 0.190862663060812 0.523884453093987 0.285252883845201 33 6.4 2.8 5.6 2.2 Iris-virginica 0.205292190918095 0.440559124941487 0.354148684140418 34 6.5 2.8 4.6 1.5 Iris-versicolor 0.1435502403159 0.696175039972106 0.160274719711994 35 6.5 3.2 5.1 2.0 Iris-virginica 0.204342833805253 0.516944942710408 0.278712223484339 36 6.7 3.3 5.7 2.1 Iris-virginica 0.204095583323598 0.405610980971113 0.390293435705288 37 7.0 3.2 4.7 1.4 Iris-versicolor 0.192961936492367 0.571332651583399 0.235705411924233 38 7.3 2.9 6.3 1.8 Iris-virginica 0.195781702751392 0.367144852589876 0.437073444658731 39 7.7 3.0 6.1 2.3 Iris-virginica 0.218571868133783 0.374164350029341 0.407263781836876 40 7.9 3.8 6.4 2.0 Iris-virginica 0.21551010822954 0.342403598851167 0.442086292919293 41 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 42 4.3 4.7 9.6 1.8 Iris-virginica 0.223112351456585 0.252742529758357 0.524145118785058 43 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 44 3.3 4.5 5.6 7.8 Iris-setosa 0.392832607894058 0.287507992369573 0.319659399736369 Rows: 1-44 | Columns: 8Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.