
verticapy.machine_learning.vertica.preprocessing.StandardScaler.inverse_transform¶
- StandardScaler.inverse_transform(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None) vDataFrame ¶
Applies the Inverse Model on a
vDataFrame
.Parameters¶
- vdf: SQLRelation
Input vDataFrame. You can also specify a customized relation, but you must enclose it with an alias. For example:
(SELECT 1) x
is valid whereas(SELECT 1)
andSELECT 1
are invalid.- X: SQLColumns, optional
list
of the inputvDataColumn
.
Returns¶
- vDataFrame
object result of the model transformation.
Examples¶
We import
verticapy
:import verticapy as vp
For this example, we will use a dummy dataset.
data = vp.vDataFrame( { "values": [1, 1.01, 1.02, 1.05, 1.024], } )
Let’s import the model:
from verticapy.machine_learning.vertica import Scaler
Then we can create the model:
model = Scaler(method = "zscore")
We can now fit the model:
model.fit(data) ======= details ======= column_name| avg |std_dev -----------+--------+-------- values | 1.02080| 0.01879
To get the scaled dataset, we can use the
transform
method. Let us transform the data:model.transform(data)
123values1 -1.10675880944634 2 -0.57466322798175 3 -0.0425676465171623 4 1.5537190978766 5 0.170270586068673 Rows: 1-5 | Column: values | Type: Float(22)Similarly, you can perform the inverse transform to get the original features using:
model.inverse_transform(data_transformed)
The variable
data_transformed
is the scaled dataset.Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.