Loading...

verticapy.machine_learning.vertica.cluster.KPrototypes#

class verticapy.machine_learning.vertica.cluster.KPrototypes(name: str = None, overwrite_model: bool = False, n_cluster: int = 8, init: Literal['random'] | list = 'random', max_iter: int = 300, tol: float = 0.0001, gamma: float = 1.0)#

Creates a KPrototypes object by using the Vertica k-prototypes algorithm. The algorithm combines the k-means and k-modes algorithms in order to handle both numerical and categorical data.

Parameters#

name: str, optional

Name of the model. The model is stored in the database.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

n_cluster: int, optional

Number of clusters.

init: str | list, optional

The method used to find the initial cluster centers.

  • random:

    The centers are initialized randomly.

You can also provide a list of initial cluster centers.

max_iter: int, optional

The maximum number of iterations the algorithm performs.

tol: float, optional

Determines whether the algorithm has converged. The algorithm is considered converged when no center moves more than a distance of ‘tol’ from the previous iteration.

gamma: float, optional

Weighting factor for categorical columns. It determines the relative importance of numerical and categorical attributes.

Attributes#

Many attributes are created during the fitting phase.

clusters_: numpy.array

Cluster centers.

p_: int

The p of the p-distances.

between_cluster_ss_: float

The between-cluster sum of squares (BSS) measures the dispersion between different clusters and is an important metric in evaluating the effectiveness of a clustering algorithm.

total_ss_: float

The total sum of squares (TSS) is used to assess the total dispersion of data points from the overall mean, providing a basis for evaluating the clustering algorithm’s performance.

total_within_cluster_ss_: float

The within-cluster sum of squares (WSS) gauges the dispersion of data points within individual clusters in a clustering analysis. It reflects the compactness of clusters and is instrumental in evaluating the homogeneity of the clusters produced by the algorithm.

elbow_score_: float

The elbow score. It helps identify the optimal number of clusters by observing the point where the rate of WSS reduction slows down, resembling the bend or ‘elbow’ in the plot, indicative of an optimal clustering solution. The bigger the better.

converged_: boolean

True if the model converged.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples#

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Load data for machine learning#

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

Model Initialization#

First we import the KPrototypes model:

from verticapy.machine_learning.vertica import KPrototypes

Then we can create the model:

model = KPrototypes(
    n_cluster = 8,
    init = "random",
    max_iter = 300,
    tol = 1e-4,
    gamma = 0.2,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training#

We can now fit the model:

model.fit(data, X = ["color", "sulphates"])

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database.

Note

In the above example we have use one categorical (“color”) and one numeric (“sulphates”) feature. KProtoTypes can handle both types of features.

Hint

For clustering and anomaly detection, the use of predictors is optional. In such cases, all available predictors are considered, which can include solely numerical variables or a combination of numerical and categorical variables, depending on the model’s capabilities.

Metrics#

You can also find the cluster positions by:

model.clusters_
Out[4]: 
array([['red', '0.583378264532435'],
       ['red', '0.873567961165049'],
       ['white', '0.308138528138528'],
       ['white', '0.369667943805875'],
       ['white', '0.426251198465964'],
       ['white', '0.492383966244726'],
       ['white', '0.585144787644788'],
       ['white', '0.7511227154047']], dtype='<U32')

To evaluate the model, various attributes are computed, such as the between sum of squares, the total within clusters sum of squares, and the total sum of squares.

model.between_cluster_ss_
Out[5]: 1648.0182

model.total_within_cluster_ss_
Out[6]: 25.223978

model.total_ss_
Out[7]: 1673.2421

Some other useful attributes can be used to evaluate the model, like the Elbow Score (the bigger it is, the better it is).

model.elbow_score_
Out[8]: 0.9849251342647906

Prediction#

Predicting or ranking the dataset is straight-forward:

model.predict(data, ["density", "sulphates"], name = "Cluster IDs")
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
Cluster IDs
Integer
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white4
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white3
34.20.170.361.80.02993.0161.00.989993.650.8912.071white1
44.20.2150.235.10.04164.0157.00.996883.420.448.030white4
54.40.320.394.30.0331.0127.00.989043.460.3612.881white3
64.40.460.12.80.02431.0111.00.988163.480.3413.160white3
74.40.540.095.10.03852.097.00.990223.410.412.271white4
84.50.190.210.950.03389.0159.00.993323.340.428.050white4
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white0
104.60.520.152.10.0548.065.00.99343.90.5613.140red0
114.70.1450.291.00.04235.090.00.99083.760.4911.360white5
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white5
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white1
144.70.60.172.30.05817.0106.00.99323.850.612.960red6
154.70.670.091.00.025.09.00.987223.30.3413.650white3
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white1
174.80.130.321.20.04240.098.00.98983.420.6411.871white6
184.80.170.282.90.0322.0111.00.99023.380.3411.371white3
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white5
204.80.2250.381.20.07447.0130.00.991323.310.410.360white4
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white2
224.80.290.231.10.04438.0180.00.989243.280.3411.960white3
234.80.330.06.50.02834.0163.00.99373.350.619.950white6
244.80.340.06.50.02833.0163.00.99393.360.619.960white6
254.80.650.121.10.0134.010.00.992463.320.3613.540white3
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white5
274.90.330.311.20.01639.0150.00.987133.330.5914.081white6
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5
304.90.3450.341.00.06832.0143.00.991383.240.410.150white4
314.90.3450.341.00.06832.0143.00.991383.240.410.150white4
324.90.420.02.10.04816.042.00.991543.710.7414.071red7
334.90.470.171.90.03560.0148.00.989643.270.3511.560white3
345.00.170.561.50.02624.0115.00.99063.480.3910.871white3
355.00.20.41.90.01520.098.00.98973.370.5512.0560white0
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white5
375.00.240.195.00.04317.0101.00.994383.670.5710.050white0
385.00.240.212.20.03931.0100.00.990983.690.6211.760white6
395.00.240.341.10.03449.0158.00.987743.320.3213.171white2
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white7
415.00.270.324.50.03258.0178.00.989563.450.3112.671white2
425.00.270.324.50.03258.0178.00.989563.450.3112.671white2
435.00.270.41.20.07642.0124.00.992043.320.4710.160white5
445.00.290.545.70.03554.0155.00.989763.270.3412.981white3
455.00.30.333.70.0354.0173.00.98873.360.313.071white2
465.00.310.06.40.04643.0166.00.9943.30.639.960white6
475.00.330.161.50.04910.097.00.99173.480.4410.760white4
485.00.330.161.50.04910.097.00.99173.480.4410.760white4
495.00.330.161.50.04910.097.00.99173.480.4410.760white4
505.00.330.184.60.03240.0124.00.991143.180.411.060white4
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white6
525.00.350.257.80.03124.0116.00.992413.390.411.360white4
535.00.350.257.80.03124.0116.00.992413.390.411.360white4
545.00.380.011.60.04826.060.00.990843.70.7514.060red7
555.00.40.54.30.04629.080.00.99023.490.6613.660red6
565.00.420.242.00.0619.050.00.99173.720.7414.081red7
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white0
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white1
595.00.550.148.30.03235.0164.00.99183.530.5112.581white5
605.00.610.121.30.00965.0100.00.98743.260.3713.550white3
615.00.740.01.20.04116.046.00.992584.010.5912.560red6
625.01.020.041.40.04541.085.00.99383.750.4810.540red5
635.01.040.241.60.0532.096.00.99343.740.6211.550red6
645.10.110.321.60.02812.090.00.990083.570.5212.260white5
655.10.140.250.70.03915.089.00.99193.220.439.260white4
665.10.1650.225.70.04742.0146.00.99343.180.559.960white0
675.10.210.281.40.04748.0148.00.991683.50.4910.450white5
685.10.230.181.00.05313.099.00.989563.220.3911.550white3
695.10.250.361.30.03540.078.00.98913.230.6412.171white6
705.10.260.331.10.02746.0113.00.989463.350.4311.471white4
715.10.260.346.40.03426.099.00.994493.230.419.260white4
725.10.290.288.30.02627.0107.00.993083.360.3711.060white3
735.10.290.288.30.02627.0107.00.993083.360.3711.060white3
745.10.30.32.30.04840.0150.00.989443.290.4612.260white5
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white5
765.10.310.30.90.03728.0152.00.9923.540.5610.160white0
775.10.330.221.60.02718.089.00.98933.510.3812.571white3
785.10.330.221.60.02718.089.00.98933.510.3812.571white3
795.10.330.221.60.02718.089.00.98933.510.3812.571white3
805.10.330.276.70.02244.0129.00.992213.360.3911.071white3
815.10.350.266.80.03436.0120.00.991883.380.411.560white4
825.10.350.266.80.03436.0120.00.991883.380.411.560white4
835.10.350.266.80.03436.0120.00.991883.380.411.560white4
845.10.390.211.70.02715.072.00.98943.50.4512.560white4
855.10.420.01.80.04418.088.00.991573.680.7313.671red7
865.10.420.011.50.01725.0102.00.98943.380.3612.371white3
875.10.470.021.30.03418.044.00.99213.90.6212.860red6
885.10.510.182.10.04216.0101.00.99243.460.8712.971red1
895.10.520.062.70.05230.079.00.99323.320.439.350white4
905.10.5850.01.70.04414.086.00.992643.560.9412.971red1
915.20.1550.331.60.02813.059.00.989753.30.8411.981white1
925.20.1550.331.60.02813.059.00.989753.30.8411.981white1
935.20.160.340.80.02926.077.00.991553.250.5110.160white5
945.20.170.270.70.0311.068.00.992183.30.419.850white4
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white4
965.20.20.273.20.04716.093.00.992353.440.5310.171white5
975.20.210.311.70.04817.061.00.989533.240.3712.071white3
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white4
995.20.240.157.10.04332.0134.00.993783.240.489.960white5
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white5
Rows: 1-100 | Columns: 15

As shown above, a new column has been created, containing the clusters.

Hint

The name of the new column is optional. If not provided, it is randomly assigned.

Plots - Cluster Plot#

Plots highlighting the different clusters can be easily drawn using:

model.plot()

Note

As we are using a categorical feature in this example, this plot cannot be drawn. It is only for numeric features. Please have a look at KMeans() for plotting examples.

Plots - Voronoi#

KPrototypes models can be visualized by drawing their voronoi plots. For more examples, check out Machine Learning - Voronoi Plots.

model.plot_voronoi()

Note

As we are using a categorical feature in this example, this plot cannot be drawn. It is only for numeric features. Please have a look at KMeans() for plotting examples.

Plots - Contour#

In order to understand the parameter space, we can also look at the contour plots:

model.contour()

Note

As we are using a categorical feature in this example, this plot cannot be drawn. It is only for numeric features. Please have a look at KMeans() for plotting examples.

Note

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to chart_gallery.contour_plot for more examples.

Parameter Modification#

In order to see the parameters:

model.get_params()
Out[9]: 
{'n_cluster': 8,
 'init': 'random',
 'max_iter': 300,
 'tol': 0.0001,
 'gamma': 0.2}

And to manually change some of the parameters:

model.set_params({'n_cluster': 5})

Model Register#

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting#

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The preceding methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL query equivalent of the KPrototypes model by:

model.to_sql()
Out[11]: 'CASE WHEN "color" IS NULL OR "sulphates" IS NULL THEN NULL WHEN POWER(POWER("sulphates" - 0.7511227154047, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.583378264532435, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.7511227154047, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.873567961165049, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.7511227154047, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.308138528138528, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.7511227154047, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.369667943805875, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.7511227154047, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.426251198465964, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.7511227154047, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.492383966244726, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.7511227154047, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.585144787644788, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) THEN 7 WHEN POWER(POWER("sulphates" - 0.585144787644788, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.583378264532435, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.585144787644788, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.873567961165049, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.585144787644788, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.308138528138528, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.585144787644788, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.369667943805875, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.585144787644788, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.426251198465964, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.585144787644788, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.492383966244726, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) THEN 6 WHEN POWER(POWER("sulphates" - 0.492383966244726, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.583378264532435, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.492383966244726, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.873567961165049, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.492383966244726, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.308138528138528, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.492383966244726, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.369667943805875, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.492383966244726, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.426251198465964, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) THEN 5 WHEN POWER(POWER("sulphates" - 0.426251198465964, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.583378264532435, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.426251198465964, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.873567961165049, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.426251198465964, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.308138528138528, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) AND POWER(POWER("sulphates" - 0.426251198465964, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.369667943805875, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) THEN 4 WHEN POWER(POWER("sulphates" - 0.369667943805875, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.583378264532435, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.369667943805875, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.873567961165049, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.369667943805875, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.308138528138528, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) THEN 3 WHEN POWER(POWER("sulphates" - 0.308138528138528, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.583378264532435, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) AND POWER(POWER("sulphates" - 0.308138528138528, 2), 1 / 2) + 0.2 * (ABS(("color" = \'white\')::int - 1)) <= POWER(POWER("sulphates" - 0.873567961165049, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) THEN 2 WHEN POWER(POWER("sulphates" - 0.873567961165049, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) <= POWER(POWER("sulphates" - 0.583378264532435, 2), 1 / 2) + 0.2 * (ABS(("color" = \'red\')::int - 1)) THEN 1 ELSE 0 END'

Note

This SQL query can be directly used in any database.

Deploy SQL

To get the SQL query which uses Vertica functions use below:

model.deploySQL()
Out[12]: 'APPLY_KPROTOTYPES("color", "sulphates" USING PARAMETERS model_name = \'"public"."_verticapy_tmp_kprototypes_v_demo_46074366e22c11eea3a80242ac120002_"\', match_by_pos = \'true\')'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[0.9, 0.5]]

model.to_python()(X)
Out[14]: array([5], dtype=object)

Hint

The to_python() method is used to retrieve the anomaly score. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, n_cluster: int = 8, init: Literal['random'] | list = 'random', max_iter: int = 300, tol: float = 0.0001, gamma: float = 1.0) None#

Must be overridden in the child class

Methods

__init__([name, overwrite_model, n_cluster, ...])

Must be overridden in the child class

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

fit(input_relation[, X, return_report])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

plot_voronoi([max_nb_points, plot_crosses, ...])

Draws the Voronoi Graph of the model.

predict(vdf[, X, name, inplace])

Makes predictions using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes