
verticapy.machine_learning.vertica.linear_model.ElasticNet¶
- class verticapy.machine_learning.vertica.linear_model.ElasticNet(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: Annotated[int | float | Decimal, 'Python Numbers'] = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs', 'cgd'] = 'cgd', l1_ratio: float = 0.5, fit_intercept: bool = True)¶
Creates an
ElasticNet
object using the Vertica Linear Regression algorithm. The Elastic Net is a regularized regression method that linearly combines theL1
andL2
penalties of theLasso
andRidge
methods.Parameters¶
- name: str, optional
Name of the model. The model is stored in the database.
- overwrite_model: bool, optional
If set to
True
, training a model with the same name as an existing model overwrites the existing model.- tol: float, optional
Determines whether the algorithm has reached the specified accuracy result.
- C: PythonNumber, optional
The regularization parameter value. The value must be zero or non-negative.
- max_iter: int, optional
Determines the maximum number of iterations the algorithm performs before achieving the specified accuracy result.
- solver: str, optional
The optimizer method used to train the model.
- newton:
Newton Method.
- bfgs:
Broyden Fletcher Goldfarb Shanno.
- cgd:
Coordinate Gradient Descent.
- l1_ratio: float, optional
ENet mixture parameter that defines the provided ratio of
L1
versusL2
regularization.- fit_intercept: bool, optional
boolean
, specifies whether the model includes an intercept. If set toFalse
, no intercept is used in training the model. Note that settingfit_intercept
toFalse
does not work well with the BFGS optimizer.
Attributes¶
Many attributes are created during the fitting phase.
- coef_: numpy.array
The regression coefficients. The order of coefficients is the same as the order of columns used during the fitting phase.
- intercept_: float
The expected value of the dependent variable when all independent variables are zero, serving as the baseline or constant term in the model.
- features_importance_: numpy.array
The importance of features is computed through the model coefficients, which are normalized based on their range. Subsequently, an activation function calculates the final score. It is necessary to use the
features_importance()
method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.
Note
All attributes can be accessed using the
get_attributes()
method.Note
Several other attributes can be accessed by using the
get_vertica_attributes()
method.Examples¶
The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.
Load data for machine learning¶
We import
verticapy
:import verticapy as vp
Hint
By assigning an alias to
verticapy
, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions fromverticapy
are used as intended without interfering with functions from other libraries.For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Note
VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.
You can easily divide your dataset into training and testing subsets using the
vDataFrame.
train_test_split()
method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Warning
In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the
vDataFrame.
to_db()
method to save your results intotables
ortemporary tables
. This will help enhance the overall performance of the process.Model Initialization¶
First we import the
ElasticNet
model:from verticapy.machine_learning.vertica import ElasticNet
Then we can create the model:
model = ElasticNet( tol = 1e-6, C = 1, max_iter = 100, solver = 'CGD', l1_ratio = 0.5, fit_intercept = True, )
Hint
In
verticapy
1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.Important
The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.
Model Training¶
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "quality", test, ) ======= details ======= predictor |coefficient|std_err |t_value |p_value ----------------+-----------+--------+--------+-------- Intercept | 5.81725 | 7.45695| 0.78011| 0.43536 fixed_acidity | 0.00000 | 0.01358| 0.00000| 1.00000 volatile_acidity| 0.00000 | 0.09544| 0.00000| 1.00000 citric_acid | 0.00000 | 0.10370| 0.00000| 1.00000 residual_sugar | 0.00000 | 0.00421| 0.00000| 1.00000 chlorides | 0.00000 | 0.43409| 0.00000| 1.00000 density | 0.00000 | 7.58525| 0.00000| 1.00000 ============== regularization ============== type| lambda ----+-------- enet| 1.00000 =========== call_string =========== linear_reg('"public"."_verticapy_tmp_linearregression_v_demo_03ddc39855a411ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_03ee622055a411ef880f0242ac120002_"', '"quality"', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS optimizer='cgd', epsilon=1e-06, max_iterations=100, regularization='enet', lambda=1, alpha=0.5, fit_intercept=true) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|5193
Important
To train a model, you can directly use the
vDataFrame
or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. Inverticapy
, we don’t work usingX
matrices andy
vectors. Instead, we work directly with lists of predictors and the response name.Metrics¶
We can get the entire report using:
model.report()
value explained_variance -6.66133814775094e-15 max_error 2.817254 median_absolute_error 0.817254 mean_absolute_error 0.684241202453988 mean_squared_error 0.770030569841153 root_mean_squared_error 0.87751385734993 r2 -4.07092901077988e-05 r2_adj -0.00466695775251402 aic -326.605846197372 bic -290.555541037003 Rows: 1-10 | Columns: 2Important
Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g.
model.report(metrics = ["mse", "r2"])
.For
LinearModel
, we can easily get the ANOVA table using:model.report(metrics = "anova")
Df SS MS F p_value Regression 6 0.0408753428027077 0.0068125571337846165 0.008799633318156468 0.9999969802595494 Residual 1297 1004.11986307286 0.7741864788534001 Total 1303 1004.07898773006 Rows: 1-3 | Columns: 6You can also use the
LinearModel.score
function to compute the R-squared value:model.score() Out[2]: -4.07092901077988e-05
Prediction¶
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density", ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor123prediction1 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 5.817254 2 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 5.817254 3 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 5.817254 4 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 5.817254 5 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 5.817254 6 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 5.817254 7 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 5.817254 8 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 5.817254 9 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 5.817254 10 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 5.817254 11 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 5.817254 12 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 5.817254 13 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 5.817254 14 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 5.817254 15 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 5.817254 16 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 5.817254 17 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 5.817254 18 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 5.817254 19 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 5.817254 20 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 5.817254 21 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 5.817254 22 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 5.817254 23 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 5.817254 24 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 5.817254 25 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 5.817254 26 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white 5.817254 27 5.2 0.28 0.29 1.1 0.028 18.0 69.0 0.99168 3.24 0.54 10.0 6 0 white 5.817254 28 5.2 0.34 0.0 1.8 0.05 27.0 63.0 0.9916 3.68 0.79 14.0 6 0 red 5.817254 29 5.2 0.36 0.02 1.6 0.031 24.0 104.0 0.9896 3.44 0.35 12.2 6 0 white 5.817254 30 5.2 0.365 0.08 13.5 0.041 37.0 142.0 0.997 3.46 0.39 9.9 6 0 white 5.817254 31 5.2 0.5 0.18 2.0 0.036 23.0 129.0 0.98949 3.36 0.77 13.4 7 1 white 5.817254 32 5.3 0.165 0.24 1.1 0.051 25.0 105.0 0.9925 3.32 0.47 9.1 5 0 white 5.817254 33 5.3 0.24 0.33 1.3 0.033 25.0 97.0 0.9906 3.59 0.38 11.0 8 1 white 5.817254 34 5.3 0.3 0.3 1.2 0.029 25.0 93.0 0.98742 3.31 0.4 13.6 7 1 white 5.817254 35 5.3 0.32 0.23 9.65 0.026 26.0 119.0 0.99168 3.18 0.53 12.2 6 0 white 5.817254 36 5.3 0.395 0.07 1.3 0.035 26.0 102.0 0.992 3.5 0.35 10.6 6 0 white 5.817254 37 5.3 0.43 0.11 1.1 0.029 6.0 51.0 0.99076 3.51 0.48 11.2 4 0 white 5.817254 38 5.4 0.22 0.29 1.2 0.045 69.0 152.0 0.99178 3.76 0.63 11.0 7 1 white 5.817254 39 5.4 0.27 0.22 4.6 0.022 29.0 107.0 0.98889 3.33 0.54 13.8 6 0 white 5.817254 40 5.4 0.3 0.3 1.2 0.029 25.0 93.0 0.98742 3.31 0.4 13.6 7 1 white 5.817254 41 5.4 0.595 0.1 2.8 0.042 26.0 80.0 0.9932 3.36 0.38 9.3 5 0 white 5.817254 42 5.5 0.12 0.33 1.0 0.038 23.0 131.0 0.99164 3.25 0.45 9.8 5 0 white 5.817254 43 5.5 0.15 0.32 14.0 0.031 16.0 99.0 0.99437 3.26 0.38 11.5 8 1 white 5.817254 44 5.5 0.17 0.23 2.9 0.039 10.0 108.0 0.99243 3.28 0.5 10.0 5 0 white 5.817254 45 5.5 0.23 0.19 2.2 0.044 39.0 161.0 0.99209 3.19 0.43 10.4 6 0 white 5.817254 46 5.5 0.32 0.13 1.3 0.037 45.0 156.0 0.99184 3.26 0.38 10.7 5 0 white 5.817254 47 5.5 0.34 0.26 2.2 0.021 31.0 119.0 0.98919 3.55 0.49 13.0 8 1 white 5.817254 48 5.6 0.12 0.33 2.9 0.044 21.0 73.0 0.98896 3.17 0.32 12.9 8 1 white 5.817254 49 5.6 0.16 0.27 1.4 0.044 53.0 168.0 0.9918 3.28 0.37 10.1 6 0 white 5.817254 50 5.6 0.18 0.29 2.3 0.04 5.0 47.0 0.99126 3.07 0.45 10.1 4 0 white 5.817254 51 5.6 0.19 0.27 0.9 0.04 52.0 103.0 0.99026 3.5 0.39 11.2 5 0 white 5.817254 52 5.6 0.19 0.46 1.1 0.032 33.0 115.0 0.9909 3.36 0.5 10.4 6 0 white 5.817254 53 5.6 0.19 0.47 4.5 0.03 19.0 112.0 0.9922 3.56 0.45 11.2 6 0 white 5.817254 54 5.6 0.2 0.22 1.3 0.049 25.0 155.0 0.99296 3.74 0.43 10.0 5 0 white 5.817254 55 5.6 0.2 0.36 2.5 0.048 16.0 125.0 0.99282 3.49 0.49 10.0 6 0 white 5.817254 56 5.6 0.2 0.66 10.2 0.043 78.0 175.0 0.9945 2.98 0.43 10.4 7 1 white 5.817254 57 5.6 0.23 0.29 3.1 0.023 19.0 89.0 0.99068 3.25 0.51 11.2 6 0 white 5.817254 58 5.6 0.28 0.27 3.9 0.043 52.0 158.0 0.99202 3.35 0.44 10.7 7 1 white 5.817254 59 5.6 0.29 0.05 0.8 0.038 11.0 30.0 0.9924 3.36 0.35 9.2 5 0 white 5.817254 60 5.6 0.32 0.32 8.3 0.043 32.0 105.0 0.99266 3.24 0.47 11.2 6 0 white 5.817254 61 5.6 0.34 0.1 1.3 0.031 20.0 68.0 0.9906 3.36 0.51 11.2 7 1 white 5.817254 62 5.6 0.35 0.4 6.3 0.022 23.0 174.0 0.9922 3.54 0.5 11.6 7 1 white 5.817254 63 5.6 0.49 0.13 4.5 0.039 17.0 116.0 0.9907 3.42 0.9 13.7 7 1 white 5.817254 64 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 5.817254 65 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 5.817254 66 5.6 0.85 0.05 1.4 0.045 12.0 88.0 0.9924 3.56 0.82 12.9 8 1 red 5.817254 67 5.7 0.14 0.3 5.4 0.045 26.0 105.0 0.99469 3.32 0.45 9.3 5 0 white 5.817254 68 5.7 0.15 0.47 11.4 0.035 49.0 128.0 0.99456 3.03 0.34 10.5 8 1 white 5.817254 69 5.7 0.21 0.32 1.6 0.03 33.0 122.0 0.99044 3.33 0.52 11.9 6 0 white 5.817254 70 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.817254 71 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 5.817254 72 5.7 0.24 0.47 6.3 0.069 35.0 182.0 0.99391 3.11 0.46 9.73333333333333 5 0 white 5.817254 73 5.7 0.335 0.34 1.0 0.04 13.0 174.0 0.992 3.27 0.66 10.0 5 0 white 5.817254 74 5.7 0.36 0.34 4.2 0.026 21.0 77.0 0.9907 3.41 0.45 11.9 6 0 white 5.817254 75 5.7 0.39 0.25 4.9 0.033 49.0 113.0 0.98966 3.26 0.58 13.1 7 1 white 5.817254 76 5.7 0.45 0.42 1.1 0.051 61.0 197.0 0.9932 3.02 0.4 9.0 5 0 white 5.817254 77 5.7 0.46 0.46 1.4 0.04 31.0 169.0 0.9932 3.13 0.47 8.8 5 0 white 5.817254 78 5.7 0.6 0.0 1.4 0.063 11.0 18.0 0.99191 3.45 0.56 12.2 6 0 red 5.817254 79 5.7 1.13 0.09 1.5 0.172 7.0 19.0 0.994 3.5 0.48 9.8 4 0 red 5.817254 80 5.8 0.15 0.31 5.9 0.036 7.0 73.0 0.99152 3.2 0.43 11.9 6 0 white 5.817254 81 5.8 0.18 0.37 1.1 0.036 31.0 96.0 0.98942 3.16 0.48 12.0 6 0 white 5.817254 82 5.8 0.18 0.37 1.2 0.036 19.0 74.0 0.98853 3.09 0.49 12.7 7 1 white 5.817254 83 5.8 0.19 0.24 1.3 0.044 38.0 128.0 0.99362 3.77 0.6 10.6 5 0 white 5.817254 84 5.8 0.19 0.25 10.8 0.042 33.0 124.0 0.99646 3.22 0.41 9.2 6 0 white 5.817254 85 5.8 0.2 0.27 1.4 0.031 12.0 77.0 0.9905 3.25 0.36 10.9 7 1 white 5.817254 86 5.8 0.2 0.34 1.0 0.035 40.0 86.0 0.98993 3.5 0.42 11.7 5 0 white 5.817254 87 5.8 0.22 0.29 1.3 0.036 25.0 68.0 0.98865 3.24 0.35 12.6 6 0 white 5.817254 88 5.8 0.23 0.21 1.5 0.044 21.0 110.0 0.99138 3.3 0.57 11.0 6 0 white 5.817254 89 5.8 0.24 0.28 1.4 0.038 40.0 76.0 0.98711 3.1 0.29 13.9 7 1 white 5.817254 90 5.8 0.25 0.28 11.1 0.056 45.0 175.0 0.99755 3.42 0.43 9.5 5 0 white 5.817254 91 5.8 0.26 0.3 2.6 0.034 75.0 129.0 0.9902 3.2 0.38 11.5 4 0 white 5.817254 92 5.8 0.275 0.3 5.4 0.043 41.0 149.0 0.9926 3.33 0.42 10.8 7 1 white 5.817254 93 5.8 0.28 0.18 1.2 0.058 7.0 108.0 0.99288 3.23 0.58 9.55 4 0 white 5.817254 94 5.8 0.28 0.3 1.5 0.026 31.0 114.0 0.98952 3.32 0.6 12.5 7 1 white 5.817254 95 5.8 0.28 0.3 3.9 0.026 36.0 105.0 0.98963 3.26 0.58 12.75 6 0 white 5.817254 96 5.8 0.28 0.34 2.2 0.037 24.0 125.0 0.98986 3.36 0.33 12.8 8 1 white 5.817254 97 5.8 0.28 0.66 9.1 0.039 26.0 159.0 0.9965 3.66 0.55 10.8 5 0 white 5.817254 98 5.8 0.3 0.27 1.7 0.014 45.0 104.0 0.98914 3.4 0.56 12.6 7 1 white 5.817254 99 5.8 0.32 0.2 2.6 0.027 17.0 123.0 0.98936 3.36 0.78 13.9 7 1 white 5.817254 100 5.8 0.32 0.28 4.3 0.032 46.0 115.0 0.98946 3.16 0.57 13.0 8 1 white 5.817254 Rows: 1-100 | Columns: 15Note
Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the
vDataFrame
to thepredict()
function, but in this case, it’s essential that the column names of thevDataFrame
match the predictors and response name in the model.Plots¶
If the model allows, you can also generate relevant plots. For example, regression plots can be found in the Machine Learning - Regression Plots.
model.plot()
Important
The plotting feature is typically suitable for models with fewer than three predictors.
Parameter Modification¶
In order to see the parameters:
model.get_params() Out[3]: {'tol': 1e-06, 'C': 1, 'max_iter': 100, 'solver': 'cgd', 'l1_ratio': 0.5, 'fit_intercept': True}
And to manually change some of the parameters:
model.set_params({'tol': 0.001})
Model Register¶
In order to register the model for tracking and versioning:
model.register("model_v1")
Please refer to Model Tracking and Versioning for more details on model tracking and versioning.
Model Exporting¶
To Memmodel
model.to_memmodel()
Note
MemModel
objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle ascikit-learn
model.The following methods for exporting the model use
MemModel
, and it is recommended to useMemModel
directly.To SQL
You can get the SQL code by:
model.to_sql() Out[5]: '5.817254 + 0.0 * "fixed_acidity" + 0.0 * "volatile_acidity" + 0.0 * "citric_acid" + 0.0 * "residual_sugar" + 0.0 * "chlorides" + 0.0 * "density"'
To Python
To obtain the prediction function in Python syntax, use the following code:
X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]] model.to_python()(X) Out[7]: array([5.817254])
Hint
The
to_python()
method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.- __init__(name: str = None, overwrite_model: bool = False, tol: float = 1e-06, C: Annotated[int | float | Decimal, 'Python Numbers'] = 1.0, max_iter: int = 100, solver: Literal['newton', 'bfgs', 'cgd'] = 'cgd', l1_ratio: float = 0.5, fit_intercept: bool = True) None ¶
Methods
__init__
([name, overwrite_model, tol, C, ...])contour
([nbins, chart])Draws the model's contour plot.
deploySQL
([X])Returns the SQL code needed to deploy the model.
does_model_exists
(name[, raise_error, ...])Checks whether the model is stored in the Vertica database.
drop
()Drops the model from the Vertica database.
export_models
(name, path[, kind])Exports machine learning models.
features_importance
([show, chart])Computes the model's features importance.
fit
(input_relation, X, y[, test_relation, ...])Trains the model.
get_attributes
([attr_name])Returns the model attributes.
get_match_index
(x, col_list[, str_check])Returns the matching index.
Returns the parameters of the model.
get_plotting_lib
([class_name, chart, ...])Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.
get_vertica_attributes
([attr_name])Returns the model Vertica attributes.
import_models
(path[, schema, kind])Imports machine learning models.
plot
([max_nb_points, chart])Draws the model.
predict
(vdf[, X, name, inplace])Predicts using the input relation.
register
(registered_name[, raise_error])Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.
regression_report
([metrics])Computes a regression report
report
([metrics])Computes a regression report
score
([metric])Computes the model score.
set_params
([parameters])Sets the parameters of the model.
Summarizes the model.
to_binary
(path)Exports the model to the Vertica Binary format.
Converts the model to an InMemory object that can be used for different types of predictions.
to_pmml
(path)Exports the model to PMML.
to_python
([return_proba, ...])Returns the Python function needed for in-memory scoring without using built-in Vertica functions.
to_sql
([X, return_proba, ...])Returns the SQL code needed to deploy the model without using built-in Vertica functions.
to_tf
(path)Exports the model to the Frozen Graph format (TensorFlow).
Attributes