Loading...

verticapy.machine_learning.vertica.neighbors.KNeighborsClassifier.predict_proba

KNeighborsClassifier.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame

Returns the model’s probabilities using the input relation.

Parameters

vdf: SQLRelation

Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example, (SELECT 1) x is valid, whereas (SELECT 1) and “SELECT 1” are invalid.

X: SQLColumns, optional

List of the columns used to deploy the models. If empty, the model predictors are used.

name: str, optional

Name of the added vDataColumn. If empty, a name is generated.

pos_label: PythonScalar, optional

Class label. For binary classification, this can be either 1 or 0.

inplace: bool, optional

If set to True, the prediction is added to the vDataFrame.

Returns

vDataFrame

the input object.

Examples

For this example, we will use the Iris dataset.

import verticapy.datasets as vpd

data = vpd.load_iris()

train, test = data.train_test_split(test_size = 0.2)
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
13.34.55.67.8Iris-setosa
23.34.55.67.8Iris-setosa
33.34.55.67.8Iris-setosa
43.34.55.67.8Iris-setosa
53.34.55.67.8Iris-setosa
63.34.55.67.8Iris-setosa
73.34.55.67.8Iris-setosa
83.34.55.67.8Iris-setosa
93.34.55.67.8Iris-setosa
103.34.55.67.8Iris-setosa
113.34.55.67.8Iris-setosa
123.34.55.67.8Iris-setosa
133.34.55.67.8Iris-setosa
143.34.55.67.8Iris-setosa
153.34.55.67.8Iris-setosa
163.34.55.67.8Iris-setosa
173.34.55.67.8Iris-setosa
183.34.55.67.8Iris-setosa
193.34.55.67.8Iris-setosa
203.34.55.67.8Iris-setosa
213.34.55.67.8Iris-setosa
223.34.55.67.8Iris-setosa
233.34.55.67.8Iris-setosa
243.34.55.67.8Iris-setosa
253.34.55.67.8Iris-setosa
263.34.55.67.8Iris-setosa
274.33.01.10.1Iris-setosa
284.34.79.61.8Iris-virginica
294.34.79.61.8Iris-virginica
304.34.79.61.8Iris-virginica
314.34.79.61.8Iris-virginica
324.34.79.61.8Iris-virginica
334.34.79.61.8Iris-virginica
344.34.79.61.8Iris-virginica
354.34.79.61.8Iris-virginica
364.34.79.61.8Iris-virginica
374.34.79.61.8Iris-virginica
384.34.79.61.8Iris-virginica
394.34.79.61.8Iris-virginica
404.34.79.61.8Iris-virginica
414.34.79.61.8Iris-virginica
424.34.79.61.8Iris-virginica
434.34.79.61.8Iris-virginica
444.34.79.61.8Iris-virginica
454.34.79.61.8Iris-virginica
464.34.79.61.8Iris-virginica
474.34.79.61.8Iris-virginica
484.34.79.61.8Iris-virginica
494.34.79.61.8Iris-virginica
504.34.79.61.8Iris-virginica
514.34.79.61.8Iris-virginica
524.34.79.61.8Iris-virginica
534.34.79.61.8Iris-virginica
544.42.91.40.2Iris-setosa
554.43.01.30.2Iris-setosa
564.43.21.30.2Iris-setosa
574.52.31.30.3Iris-setosa
584.63.11.50.2Iris-setosa
594.63.21.40.2Iris-setosa
604.63.41.40.3Iris-setosa
614.63.61.00.2Iris-setosa
624.73.21.30.2Iris-setosa
634.73.21.60.2Iris-setosa
644.83.01.40.1Iris-setosa
654.83.01.40.3Iris-setosa
664.83.11.60.2Iris-setosa
674.83.41.60.2Iris-setosa
684.83.41.90.2Iris-setosa
694.92.43.31.0Iris-versicolor
704.92.54.51.7Iris-virginica
714.93.01.40.2Iris-setosa
724.93.11.50.1Iris-setosa
734.93.11.50.1Iris-setosa
744.93.11.50.1Iris-setosa
755.02.03.51.0Iris-versicolor
765.02.33.31.0Iris-versicolor
775.03.01.60.2Iris-setosa
785.03.21.20.2Iris-setosa
795.03.31.40.2Iris-setosa
805.03.41.50.2Iris-setosa
815.03.41.60.4Iris-setosa
825.03.51.30.3Iris-setosa
835.03.51.60.6Iris-setosa
845.03.61.40.2Iris-setosa
855.12.53.01.1Iris-versicolor
865.13.31.70.5Iris-setosa
875.13.41.50.2Iris-setosa
885.13.51.40.2Iris-setosa
895.13.51.40.3Iris-setosa
905.13.71.50.4Iris-setosa
915.13.81.50.3Iris-setosa
925.13.81.60.2Iris-setosa
935.13.81.90.4Iris-setosa
945.22.73.91.4Iris-versicolor
955.23.41.40.2Iris-setosa
965.23.51.50.2Iris-setosa
975.24.11.50.1Iris-setosa
985.33.71.50.2Iris-setosa
995.43.04.51.5Iris-versicolor
1005.43.41.50.4Iris-setosa
Rows: 1-100 | Columns: 5

Let’s import the model:

from verticapy.machine_learning.vertica import NearestCentroid

Then we can create the model:

model = NearestCentroid(p = 2)

We can now fit the model:

model.fit(
    train,
    [
        "SepalLengthCm",
        "SepalWidthCm",
        "PetalLengthCm",
        "PetalWidthCm",
    ],
    "Species",
    test,
)

We can then get the prediction:

model.predict_proba(test, name = "prediction"
123
SepalLengthCm
Numeric(7)
123
SepalWidthCm
Numeric(7)
123
PetalLengthCm
Numeric(7)
123
PetalWidthCm
Numeric(7)
Abc
Species
Varchar(30)
123
prediction_irissetosa
Float(22)
123
prediction_irisversicolor
Float(22)
123
prediction_irisvirginica
Float(22)
13.34.55.67.8Iris-setosa0.4041649068264910.2820278190938290.31380727407968
23.34.55.67.8Iris-setosa0.4041649068264910.2820278190938290.31380727407968
33.34.55.67.8Iris-setosa0.4041649068264910.2820278190938290.31380727407968
43.34.55.67.8Iris-setosa0.4041649068264910.2820278190938290.31380727407968
53.34.55.67.8Iris-setosa0.4041649068264910.2820278190938290.31380727407968
63.34.55.67.8Iris-setosa0.4041649068264910.2820278190938290.31380727407968
74.33.01.10.1Iris-setosa0.3711280591112420.3958899539830270.232981986905731
84.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
94.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
104.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
114.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
124.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
134.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
144.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
154.63.21.40.2Iris-setosa0.365114101452090.406628907964450.22825699058346
164.93.01.40.2Iris-setosa0.3543434858172420.4183584386061890.227298075576569
174.93.11.50.1Iris-setosa0.3503395163700410.4210567048196690.228603778810291
185.02.33.31.0Iris-versicolor0.2673165663883470.5410638357774630.19161959783419
195.03.21.20.2Iris-setosa0.3593301487541550.4116346644072520.229035186838594
205.13.41.50.2Iris-setosa0.3526017048362450.4200973425285560.227300952635199
215.13.51.40.3Iris-setosa0.3599228426335510.4135011560321490.226576001334301
225.13.81.90.4Iris-setosa0.3552162785627190.4215301281287470.223253593308534
235.24.11.50.1Iris-setosa0.3575593376834430.407919364726950.234521297589608
245.43.41.70.2Iris-setosa0.3383155373093830.4356914650624220.225992997628195
255.52.43.81.1Iris-versicolor0.1731984747160880.6784995213672610.148302003916651
265.54.21.40.2Iris-setosa0.3568057688301080.4081471306962440.235047100473648
275.72.94.21.3Iris-versicolor0.08186268004757790.8390344329527080.0791028869997141
285.73.81.70.3Iris-setosa0.3400533774695720.4316635506512360.228283071879191
295.84.01.20.2Iris-setosa0.3514737709719630.4127191707686190.235807058259419
305.93.04.21.5Iris-versicolor0.08572685117864970.8318126538708210.0824604949505292
316.02.24.01.0Iris-versicolor0.1456489185467890.7088343506833990.145516730769812
326.12.65.61.4Iris-virginica0.1697755299431110.4856057913289060.344618678727983
336.22.84.81.8Iris-virginica0.1529658873906290.649150532747320.197883579862051
346.32.95.61.8Iris-virginica0.1770924463903530.4468567808508990.376050772758748
356.33.34.71.6Iris-versicolor0.161276765767420.6319201605333750.206803073699206
366.42.85.62.2Iris-virginica0.1938027269056620.4229174886910060.383279784403332
376.43.25.32.3Iris-virginica0.2090181356562290.4428988604352180.348083003908554
386.73.35.72.1Iris-virginica0.1906890896997270.3865030049138430.422807905386429
396.83.25.92.3Iris-virginica0.1918964820009940.3554058074885010.452697710510505
406.93.14.91.5Iris-versicolor0.178244999504680.5584251241988170.263329876296503
416.93.25.72.3Iris-virginica0.2008888155724270.3845241408771740.414587043550399
423.34.55.67.8Iris-setosa0.4041649068264910.2820278190938290.31380727407968
434.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
444.34.79.61.8Iris-virginica0.2348460923459550.2641345600688330.501019347585212
Rows: 1-44 | Columns: 8

Important

For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.