
verticapy.machine_learning.vertica.neighbors.KNeighborsClassifier.predict_proba¶
- KNeighborsClassifier.predict_proba(vdf: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, name: str | None = None, pos_label: Annotated[bool | float | str | timedelta | datetime, 'Python Scalar'] | None = None, inplace: bool = True) vDataFrame ¶
Returns the model’s probabilities using the input relation.
Parameters¶
- vdf: SQLRelation
Object used to run the prediction. You can also specify a customized relation, but you must enclose it with an alias. For example,
(SELECT 1) x
is valid, whereas(SELECT 1)
and “SELECT 1” are invalid.- X: SQLColumns, optional
List of the columns used to deploy the models. If empty, the model predictors are used.
- name: str, optional
Name of the added vDataColumn. If empty, a name is generated.
- pos_label: PythonScalar, optional
Class label. For binary classification, this can be either 1 or 0.
- inplace: bool, optional
If set to True, the prediction is added to the vDataFrame.
Returns¶
- vDataFrame
the input object.
Examples¶
For this example, we will use the Iris dataset.
import verticapy.datasets as vpd data = vpd.load_iris() train, test = data.train_test_split(test_size = 0.2)
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies1 3.3 4.5 5.6 7.8 Iris-setosa 2 3.3 4.5 5.6 7.8 Iris-setosa 3 3.3 4.5 5.6 7.8 Iris-setosa 4 3.3 4.5 5.6 7.8 Iris-setosa 5 3.3 4.5 5.6 7.8 Iris-setosa 6 3.3 4.5 5.6 7.8 Iris-setosa 7 3.3 4.5 5.6 7.8 Iris-setosa 8 3.3 4.5 5.6 7.8 Iris-setosa 9 3.3 4.5 5.6 7.8 Iris-setosa 10 3.3 4.5 5.6 7.8 Iris-setosa 11 3.3 4.5 5.6 7.8 Iris-setosa 12 3.3 4.5 5.6 7.8 Iris-setosa 13 3.3 4.5 5.6 7.8 Iris-setosa 14 3.3 4.5 5.6 7.8 Iris-setosa 15 3.3 4.5 5.6 7.8 Iris-setosa 16 3.3 4.5 5.6 7.8 Iris-setosa 17 3.3 4.5 5.6 7.8 Iris-setosa 18 3.3 4.5 5.6 7.8 Iris-setosa 19 3.3 4.5 5.6 7.8 Iris-setosa 20 3.3 4.5 5.6 7.8 Iris-setosa 21 3.3 4.5 5.6 7.8 Iris-setosa 22 3.3 4.5 5.6 7.8 Iris-setosa 23 3.3 4.5 5.6 7.8 Iris-setosa 24 3.3 4.5 5.6 7.8 Iris-setosa 25 3.3 4.5 5.6 7.8 Iris-setosa 26 3.3 4.5 5.6 7.8 Iris-setosa 27 4.3 3.0 1.1 0.1 Iris-setosa 28 4.3 4.7 9.6 1.8 Iris-virginica 29 4.3 4.7 9.6 1.8 Iris-virginica 30 4.3 4.7 9.6 1.8 Iris-virginica 31 4.3 4.7 9.6 1.8 Iris-virginica 32 4.3 4.7 9.6 1.8 Iris-virginica 33 4.3 4.7 9.6 1.8 Iris-virginica 34 4.3 4.7 9.6 1.8 Iris-virginica 35 4.3 4.7 9.6 1.8 Iris-virginica 36 4.3 4.7 9.6 1.8 Iris-virginica 37 4.3 4.7 9.6 1.8 Iris-virginica 38 4.3 4.7 9.6 1.8 Iris-virginica 39 4.3 4.7 9.6 1.8 Iris-virginica 40 4.3 4.7 9.6 1.8 Iris-virginica 41 4.3 4.7 9.6 1.8 Iris-virginica 42 4.3 4.7 9.6 1.8 Iris-virginica 43 4.3 4.7 9.6 1.8 Iris-virginica 44 4.3 4.7 9.6 1.8 Iris-virginica 45 4.3 4.7 9.6 1.8 Iris-virginica 46 4.3 4.7 9.6 1.8 Iris-virginica 47 4.3 4.7 9.6 1.8 Iris-virginica 48 4.3 4.7 9.6 1.8 Iris-virginica 49 4.3 4.7 9.6 1.8 Iris-virginica 50 4.3 4.7 9.6 1.8 Iris-virginica 51 4.3 4.7 9.6 1.8 Iris-virginica 52 4.3 4.7 9.6 1.8 Iris-virginica 53 4.3 4.7 9.6 1.8 Iris-virginica 54 4.4 2.9 1.4 0.2 Iris-setosa 55 4.4 3.0 1.3 0.2 Iris-setosa 56 4.4 3.2 1.3 0.2 Iris-setosa 57 4.5 2.3 1.3 0.3 Iris-setosa 58 4.6 3.1 1.5 0.2 Iris-setosa 59 4.6 3.2 1.4 0.2 Iris-setosa 60 4.6 3.4 1.4 0.3 Iris-setosa 61 4.6 3.6 1.0 0.2 Iris-setosa 62 4.7 3.2 1.3 0.2 Iris-setosa 63 4.7 3.2 1.6 0.2 Iris-setosa 64 4.8 3.0 1.4 0.1 Iris-setosa 65 4.8 3.0 1.4 0.3 Iris-setosa 66 4.8 3.1 1.6 0.2 Iris-setosa 67 4.8 3.4 1.6 0.2 Iris-setosa 68 4.8 3.4 1.9 0.2 Iris-setosa 69 4.9 2.4 3.3 1.0 Iris-versicolor 70 4.9 2.5 4.5 1.7 Iris-virginica 71 4.9 3.0 1.4 0.2 Iris-setosa 72 4.9 3.1 1.5 0.1 Iris-setosa 73 4.9 3.1 1.5 0.1 Iris-setosa 74 4.9 3.1 1.5 0.1 Iris-setosa 75 5.0 2.0 3.5 1.0 Iris-versicolor 76 5.0 2.3 3.3 1.0 Iris-versicolor 77 5.0 3.0 1.6 0.2 Iris-setosa 78 5.0 3.2 1.2 0.2 Iris-setosa 79 5.0 3.3 1.4 0.2 Iris-setosa 80 5.0 3.4 1.5 0.2 Iris-setosa 81 5.0 3.4 1.6 0.4 Iris-setosa 82 5.0 3.5 1.3 0.3 Iris-setosa 83 5.0 3.5 1.6 0.6 Iris-setosa 84 5.0 3.6 1.4 0.2 Iris-setosa 85 5.1 2.5 3.0 1.1 Iris-versicolor 86 5.1 3.3 1.7 0.5 Iris-setosa 87 5.1 3.4 1.5 0.2 Iris-setosa 88 5.1 3.5 1.4 0.2 Iris-setosa 89 5.1 3.5 1.4 0.3 Iris-setosa 90 5.1 3.7 1.5 0.4 Iris-setosa 91 5.1 3.8 1.5 0.3 Iris-setosa 92 5.1 3.8 1.6 0.2 Iris-setosa 93 5.1 3.8 1.9 0.4 Iris-setosa 94 5.2 2.7 3.9 1.4 Iris-versicolor 95 5.2 3.4 1.4 0.2 Iris-setosa 96 5.2 3.5 1.5 0.2 Iris-setosa 97 5.2 4.1 1.5 0.1 Iris-setosa 98 5.3 3.7 1.5 0.2 Iris-setosa 99 5.4 3.0 4.5 1.5 Iris-versicolor 100 5.4 3.4 1.5 0.4 Iris-setosa Rows: 1-100 | Columns: 5Let’s import the model:
from verticapy.machine_learning.vertica import NearestCentroid
Then we can create the model:
model = NearestCentroid(p = 2)
We can now fit the model:
model.fit( train, [ "SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm", ], "Species", test, )
We can then get the prediction:
model.predict_proba(test, name = "prediction"
123SepalLengthCm123SepalWidthCm123PetalLengthCm123PetalWidthCmAbcSpecies123prediction_irissetosa123prediction_irisversicolor123prediction_irisvirginica1 3.3 4.5 5.6 7.8 Iris-setosa 0.404164906826491 0.282027819093829 0.31380727407968 2 3.3 4.5 5.6 7.8 Iris-setosa 0.404164906826491 0.282027819093829 0.31380727407968 3 3.3 4.5 5.6 7.8 Iris-setosa 0.404164906826491 0.282027819093829 0.31380727407968 4 3.3 4.5 5.6 7.8 Iris-setosa 0.404164906826491 0.282027819093829 0.31380727407968 5 3.3 4.5 5.6 7.8 Iris-setosa 0.404164906826491 0.282027819093829 0.31380727407968 6 3.3 4.5 5.6 7.8 Iris-setosa 0.404164906826491 0.282027819093829 0.31380727407968 7 4.3 3.0 1.1 0.1 Iris-setosa 0.371128059111242 0.395889953983027 0.232981986905731 8 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 9 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 10 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 11 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 12 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 13 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 14 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 15 4.6 3.2 1.4 0.2 Iris-setosa 0.36511410145209 0.40662890796445 0.22825699058346 16 4.9 3.0 1.4 0.2 Iris-setosa 0.354343485817242 0.418358438606189 0.227298075576569 17 4.9 3.1 1.5 0.1 Iris-setosa 0.350339516370041 0.421056704819669 0.228603778810291 18 5.0 2.3 3.3 1.0 Iris-versicolor 0.267316566388347 0.541063835777463 0.19161959783419 19 5.0 3.2 1.2 0.2 Iris-setosa 0.359330148754155 0.411634664407252 0.229035186838594 20 5.1 3.4 1.5 0.2 Iris-setosa 0.352601704836245 0.420097342528556 0.227300952635199 21 5.1 3.5 1.4 0.3 Iris-setosa 0.359922842633551 0.413501156032149 0.226576001334301 22 5.1 3.8 1.9 0.4 Iris-setosa 0.355216278562719 0.421530128128747 0.223253593308534 23 5.2 4.1 1.5 0.1 Iris-setosa 0.357559337683443 0.40791936472695 0.234521297589608 24 5.4 3.4 1.7 0.2 Iris-setosa 0.338315537309383 0.435691465062422 0.225992997628195 25 5.5 2.4 3.8 1.1 Iris-versicolor 0.173198474716088 0.678499521367261 0.148302003916651 26 5.5 4.2 1.4 0.2 Iris-setosa 0.356805768830108 0.408147130696244 0.235047100473648 27 5.7 2.9 4.2 1.3 Iris-versicolor 0.0818626800475779 0.839034432952708 0.0791028869997141 28 5.7 3.8 1.7 0.3 Iris-setosa 0.340053377469572 0.431663550651236 0.228283071879191 29 5.8 4.0 1.2 0.2 Iris-setosa 0.351473770971963 0.412719170768619 0.235807058259419 30 5.9 3.0 4.2 1.5 Iris-versicolor 0.0857268511786497 0.831812653870821 0.0824604949505292 31 6.0 2.2 4.0 1.0 Iris-versicolor 0.145648918546789 0.708834350683399 0.145516730769812 32 6.1 2.6 5.6 1.4 Iris-virginica 0.169775529943111 0.485605791328906 0.344618678727983 33 6.2 2.8 4.8 1.8 Iris-virginica 0.152965887390629 0.64915053274732 0.197883579862051 34 6.3 2.9 5.6 1.8 Iris-virginica 0.177092446390353 0.446856780850899 0.376050772758748 35 6.3 3.3 4.7 1.6 Iris-versicolor 0.16127676576742 0.631920160533375 0.206803073699206 36 6.4 2.8 5.6 2.2 Iris-virginica 0.193802726905662 0.422917488691006 0.383279784403332 37 6.4 3.2 5.3 2.3 Iris-virginica 0.209018135656229 0.442898860435218 0.348083003908554 38 6.7 3.3 5.7 2.1 Iris-virginica 0.190689089699727 0.386503004913843 0.422807905386429 39 6.8 3.2 5.9 2.3 Iris-virginica 0.191896482000994 0.355405807488501 0.452697710510505 40 6.9 3.1 4.9 1.5 Iris-versicolor 0.17824499950468 0.558425124198817 0.263329876296503 41 6.9 3.2 5.7 2.3 Iris-virginica 0.200888815572427 0.384524140877174 0.414587043550399 42 3.3 4.5 5.6 7.8 Iris-setosa 0.404164906826491 0.282027819093829 0.31380727407968 43 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 44 4.3 4.7 9.6 1.8 Iris-virginica 0.234846092345955 0.264134560068833 0.501019347585212 Rows: 1-44 | Columns: 8Important
For this example, a specific model is utilized, and it may not correspond exactly to the model you are working with. To see a comprehensive example specific to your class of interest, please refer to that particular class.