
verticapy.machine_learning.vertica.cluster.DBSCAN.fit¶
- DBSCAN.fit(input_relation: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, key_columns: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, index: str | None = None, return_report: bool = False) None ¶
Trains the model.
Parameters¶
- input_relation: SQLRelation
Training relation.
- X: SQLColumns, optional
list
of the predictors. If empty, all the numerical :py:class:`~vDataColumn are used.- key_columns: SQLColumns, optional
Columns not used during the algorithm computation but which are used to create the final relation.
- index: str, optional
Index used to identify each row separately. It is highly recommanded to have one already in the main table to avoid creating temporary tables.
Examples¶
Let’s start by importing
verticapy
:import verticapy as vp
For this example, we will create a small dataset.
data = vp.vDataFrame({"col":[1.2, 1.1, 1.3, 1.5, 2, 2.2, 1.09, 0.9, 100, 102]})
Then we import the model:
from verticapy.machine_learning.vertica import DBSCAN
Then we can create the model:
model = DBSCAN( eps = 0.5, min_samples = 2, p = 2, )
Once the model is initialized we can fit the model:
model.fit(data, X = ["col"])
Note
Refer to
DBSCAN
for more information about the different methods and usages.