Loading...

verticapy.machine_learning.vertica.cluster.DBSCAN.fit

DBSCAN.fit(input_relation: Annotated[str | vDataFrame, ''], X: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, key_columns: Annotated[str | list[str], 'STRING representing one column or a list of columns'] | None = None, index: str | None = None, return_report: bool = False) None

Trains the model.

Parameters

input_relation: SQLRelation

Training relation.

X: SQLColumns, optional

list of the predictors. If empty, all the numerical :py:class:`~vDataColumn are used.

key_columns: SQLColumns, optional

Columns not used during the algorithm computation but which are used to create the final relation.

index: str, optional

Index used to identify each row separately. It is highly recommanded to have one already in the main table to avoid creating temporary tables.

Examples

Let’s start by importing verticapy:

import verticapy as vp

For this example, we will create a small dataset.

data = vp.vDataFrame({"col":[1.2, 1.1, 1.3, 1.5, 2, 2.2, 1.09, 0.9, 100, 102]})

Then we import the model:

from verticapy.machine_learning.vertica import DBSCAN

Then we can create the model:

model = DBSCAN(
    eps = 0.5,
    min_samples = 2,
    p = 2,
)

Once the model is initialized we can fit the model:

model.fit(data, X = ["col"])

Note

Refer to DBSCAN for more information about the different methods and usages.