Loading...

verticapy.machine_learning.vertica.ensemble.RandomForestRegressor

class verticapy.machine_learning.vertica.ensemble.RandomForestRegressor(name: str = None, overwrite_model: bool = False, n_estimators: int = 10, max_features: Literal['auto', 'max'] | int = 'auto', max_leaf_nodes: Annotated[int | float | Decimal, 'Python Numbers'] = 1000000000.0, sample: float = 0.632, max_depth: int = 5, min_samples_leaf: int = 1, min_info_gain: Annotated[int | float | Decimal, 'Python Numbers'] = 0.0, nbins: int = 32)

Creates a RandomForestRegressor object using the Vertica RF_REGRESSOR function. It is an ensemble learning method for regression that operates by constructing a multitude of decision trees at training-time and outputting a class with the mode.

Parameters

name: str, optional

Name of the model. The model is stored in the DB.

overwrite_model: bool, optional

If set to True, training a model with the same name as an existing model overwrites the existing model.

n_estimators: int, optional

The number of trees in the forest, an integer between 1 and 1000, inclusive.

max_features: int | str, optional

The number of randomly chosen features from which to pick the best feature to split a given tree node. It can be an integer or one of the two following methods.

  • auto:

    square root of the total number of predictors.

  • max :

    number of predictors.

max_leaf_nodes: PythonNumber, optional

The maximum number of leaf nodes for a tree in the forest, an integerv between ``1 and 1e9, inclusive.

sample: float, optional

The portion of the input data set that is randomly selected for training each tree, a float between 0.0 and 1.0, inclusive.

max_depth: int, optional

aximum depth of each tree, an integer between 1 and 100, inclusive.

min_samples_leaf: int, optional

The minimum number of samples each branch must have after splitting a node, an integer between 1 and 1e6, inclusive. A split that results in remaining samples less than this value is discarded.

min_info_gain: PythonNumber, optional

The minimum threshold for including a split, a float between 0.0 and 1.0, inclusive. A split with information gain less than this threshold is discarded.

nbins: int, optional

Number of bins used to find splits in each column, where more splits leads to a longer runtime but more fine-grained, possibly better splits. Must be an integer between 2 and 1000, inclusive.

Attributes

Many attributes are created during the fitting phase.

trees_: list of BinaryTreeRegressor

Tree models are instances of ` BinaryTreeRegressor, each possessing various attributes. For more detailed information, refer to the documentation for BinaryTreeRegressor.

features_importance_: numpy.array

The importance of features. It is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them. It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

features_importance_trees_: dict of numpy.array

Each element of the array represents the feature importance of tree i. The importance of features is calculated using the MDI (Mean Decreased Impurity). It is necessary to use the features_importance() method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.

n_estimators_: int

The number of model estimators.

Note

All attributes can be accessed using the get_attributes() method.

Note

Several other attributes can be accessed by using the get_vertica_attributes() method.

Examples

The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.

Important

Many tree-based models inherit from the RandomForest base class, and it’s recommended to use it directly for access to a wider range of options.

Load data for machine learning

We import verticapy:

import verticapy as vp

Hint

By assigning an alias to verticapy, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions from verticapy are used as intended without interfering with functions from other libraries.

For this example, we will use the winequality dataset.

import verticapy.datasets as vpd

data = vpd.load_winequality()
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white
23.90.2250.44.20.0329.0118.00.9893.570.3612.881white
34.20.170.361.80.02993.0161.00.989993.650.8912.071white
44.20.2150.235.10.04164.0157.00.996883.420.448.030white
54.40.320.394.30.0331.0127.00.989043.460.3612.881white
64.40.460.12.80.02431.0111.00.988163.480.3413.160white
74.40.540.095.10.03852.097.00.990223.410.412.271white
84.50.190.210.950.03389.0159.00.993323.340.428.050white
94.60.4450.01.40.05311.0178.00.994263.790.5510.250white
104.60.520.152.10.0548.065.00.99343.90.5613.140red
114.70.1450.291.00.04235.090.00.99083.760.4911.360white
124.70.3350.141.30.03669.0168.00.992123.470.4610.550white
134.70.4550.181.90.03633.0106.00.987463.210.8314.071white
144.70.60.172.30.05817.0106.00.99323.850.612.960red
154.70.670.091.00.025.09.00.987223.30.3413.650white
164.70.7850.03.40.03623.0134.00.989813.530.9213.860white
174.80.130.321.20.04240.098.00.98983.420.6411.871white
184.80.170.282.90.0322.0111.00.99023.380.3411.371white
194.80.210.2110.20.03717.0112.00.993243.660.4812.271white
204.80.2250.381.20.07447.0130.00.991323.310.410.360white
214.80.260.2310.60.03423.0111.00.992743.460.2811.571white
224.80.290.231.10.04438.0180.00.989243.280.3411.960white
234.80.330.06.50.02834.0163.00.99373.350.619.950white
244.80.340.06.50.02833.0163.00.99393.360.619.960white
254.80.650.121.10.0134.010.00.992463.320.3613.540white
264.90.2350.2711.750.0334.0118.00.99543.070.59.460white
274.90.330.311.20.01639.0150.00.987133.330.5914.081white
284.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
294.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white
304.90.3450.341.00.06832.0143.00.991383.240.410.150white
314.90.3450.341.00.06832.0143.00.991383.240.410.150white
324.90.420.02.10.04816.042.00.991543.710.7414.071red
334.90.470.171.90.03560.0148.00.989643.270.3511.560white
345.00.170.561.50.02624.0115.00.99063.480.3910.871white
355.00.20.41.90.01520.098.00.98973.370.5512.0560white
365.00.2350.2711.750.0334.0118.00.99543.070.59.460white
375.00.240.195.00.04317.0101.00.994383.670.5710.050white
385.00.240.212.20.03931.0100.00.990983.690.6211.760white
395.00.240.341.10.03449.0158.00.987743.320.3213.171white
405.00.2550.222.70.04346.0153.00.992383.750.7611.360white
415.00.270.324.50.03258.0178.00.989563.450.3112.671white
425.00.270.324.50.03258.0178.00.989563.450.3112.671white
435.00.270.41.20.07642.0124.00.992043.320.4710.160white
445.00.290.545.70.03554.0155.00.989763.270.3412.981white
455.00.30.333.70.0354.0173.00.98873.360.313.071white
465.00.310.06.40.04643.0166.00.9943.30.639.960white
475.00.330.161.50.04910.097.00.99173.480.4410.760white
485.00.330.161.50.04910.097.00.99173.480.4410.760white
495.00.330.161.50.04910.097.00.99173.480.4410.760white
505.00.330.184.60.03240.0124.00.991143.180.411.060white
515.00.330.2311.80.0323.0158.00.993223.410.6411.860white
525.00.350.257.80.03124.0116.00.992413.390.411.360white
535.00.350.257.80.03124.0116.00.992413.390.411.360white
545.00.380.011.60.04826.060.00.990843.70.7514.060red
555.00.40.54.30.04629.080.00.99023.490.6613.660red
565.00.420.242.00.0619.050.00.99173.720.7414.081red
575.00.440.0418.60.03938.0128.00.99853.370.5710.260white
585.00.4550.181.90.03633.0106.00.987463.210.8314.071white
595.00.550.148.30.03235.0164.00.99183.530.5112.581white
605.00.610.121.30.00965.0100.00.98743.260.3713.550white
615.00.740.01.20.04116.046.00.992584.010.5912.560red
625.01.020.041.40.04541.085.00.99383.750.4810.540red
635.01.040.241.60.0532.096.00.99343.740.6211.550red
645.10.110.321.60.02812.090.00.990083.570.5212.260white
655.10.140.250.70.03915.089.00.99193.220.439.260white
665.10.1650.225.70.04742.0146.00.99343.180.559.960white
675.10.210.281.40.04748.0148.00.991683.50.4910.450white
685.10.230.181.00.05313.099.00.989563.220.3911.550white
695.10.250.361.30.03540.078.00.98913.230.6412.171white
705.10.260.331.10.02746.0113.00.989463.350.4311.471white
715.10.260.346.40.03426.099.00.994493.230.419.260white
725.10.290.288.30.02627.0107.00.993083.360.3711.060white
735.10.290.288.30.02627.0107.00.993083.360.3711.060white
745.10.30.32.30.04840.0150.00.989443.290.4612.260white
755.10.3050.131.750.03617.073.00.993.40.5112.333333333333350white
765.10.310.30.90.03728.0152.00.9923.540.5610.160white
775.10.330.221.60.02718.089.00.98933.510.3812.571white
785.10.330.221.60.02718.089.00.98933.510.3812.571white
795.10.330.221.60.02718.089.00.98933.510.3812.571white
805.10.330.276.70.02244.0129.00.992213.360.3911.071white
815.10.350.266.80.03436.0120.00.991883.380.411.560white
825.10.350.266.80.03436.0120.00.991883.380.411.560white
835.10.350.266.80.03436.0120.00.991883.380.411.560white
845.10.390.211.70.02715.072.00.98943.50.4512.560white
855.10.420.01.80.04418.088.00.991573.680.7313.671red
865.10.420.011.50.01725.0102.00.98943.380.3612.371white
875.10.470.021.30.03418.044.00.99213.90.6212.860red
885.10.510.182.10.04216.0101.00.99243.460.8712.971red
895.10.520.062.70.05230.079.00.99323.320.439.350white
905.10.5850.01.70.04414.086.00.992643.560.9412.971red
915.20.1550.331.60.02813.059.00.989753.30.8411.981white
925.20.1550.331.60.02813.059.00.989753.30.8411.981white
935.20.160.340.80.02926.077.00.991553.250.5110.160white
945.20.170.270.70.0311.068.00.992183.30.419.850white
955.20.1850.221.00.0347.0123.00.992183.550.4410.1560white
965.20.20.273.20.04716.093.00.992353.440.5310.171white
975.20.210.311.70.04817.061.00.989533.240.3712.071white
985.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white
995.20.240.157.10.04332.0134.00.993783.240.489.960white
1005.20.240.453.80.02721.0128.00.9923.550.4911.281white
Rows: 1-100 | Columns: 14

Note

VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.

You can easily divide your dataset into training and testing subsets using the vDataFrame.train_test_split() method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.

data = vpd.load_winequality()
train, test = data.train_test_split(test_size = 0.2)

Warning

In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the vDataFrame.to_db() method to save your results into tables or temporary tables. This will help enhance the overall performance of the process.

Model Initialization

First we import the RandomForestRegressor model:

from verticapy.machine_learning.vertica import RandomForestRegressor

Then we can create the model:

model = RandomForestRegressor(
    max_features = "auto",
    max_leaf_nodes = 32,
    sample = 0.5,
    max_depth = 3,
    min_samples_leaf = 5,
    min_info_gain = 0.0,
    nbins = 32,
)

Hint

In verticapy 1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.

Important

The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.

Model Training

We can now fit the model:

model.fit(
    train,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "quality",
    test,
)



===========
call_string
===========
SELECT rf_regressor('"public"."_verticapy_tmp_randomforestregressor_v_demo_d1d33a5455a311ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_d1e048de55a311ef880f0242ac120002_"', 'quality', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS exclude_columns='', ntree=10, mtry=3, sampling_size=0.5, max_depth=3, max_breadth=32, min_leaf_size=5, min_info_gain=0, nbins=32);

=======
details
=======
   predictor    |      type      
----------------+----------------
 fixed_acidity  |float or numeric
volatile_acidity|float or numeric
  citric_acid   |float or numeric
 residual_sugar |float or numeric
   chlorides    |float or numeric
    density     |float or numeric


===============
Additional Info
===============
       Name       |Value
------------------+-----
    tree_count    | 10  
rejected_row_count|  0  
accepted_row_count|5192 

Important

To train a model, you can directly use the vDataFrame or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. In verticapy, we don’t work using X matrices and y vectors. Instead, we work directly with lists of predictors and the response name.

Features Importance

We can conveniently get the features importance:

result = model.features_importance()

Note

In models such as RandomForest, feature importance is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them.

Metrics

We can get the entire report using:

model.report()
value
explained_variance0.172685468333178
max_error2.81184858072756
median_absolute_error0.568571830498591
mean_absolute_error0.624029016229468
mean_squared_error0.610582506103535
root_mean_squared_error0.78139778992747
r20.171809995860813
r2_adj0.167981690756934
aic-629.649201401192
bic-593.593405267752
Rows: 1-10 | Columns: 2

Important

Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g. model.report(metrics = ["mse", "r2"]).

You can utilize the score() function to calculate various regression metrics, with the R-squared being the default.

model.score()
Out[4]: 0.171809995860813

Prediction

Prediction is straight-forward:

model.predict(
    test,
    [
        "fixed_acidity",
        "volatile_acidity",
        "citric_acid",
        "residual_sugar",
        "chlorides",
        "density",
    ],
    "prediction",
)
123
fixed_acidity
Numeric(8)
123
volatile_acidity
Numeric(9)
123
citric_acid
Numeric(8)
123
residual_sugar
Numeric(9)
123
chlorides
Float(22)
123
free_sulfur_dioxide
Numeric(9)
123
total_sulfur_dioxide
Numeric(9)
123
density
Float(22)
123
pH
Numeric(8)
123
sulphates
Numeric(8)
123
alcohol
Float(22)
123
quality
Integer
123
good
Integer
Abc
color
Varchar(20)
123
prediction
Float(22)
13.80.310.0211.10.03620.0114.00.992483.750.4412.460white5.64612149752263
24.40.320.394.30.0331.0127.00.989043.460.3612.881white6.40536563044835
34.40.540.095.10.03852.097.00.990223.410.412.271white6.42153335103855
44.50.190.210.950.03389.0159.00.993323.340.428.050white5.65991849887665
54.70.1450.291.00.04235.090.00.99083.760.4911.360white6.22059586371688
64.70.60.172.30.05817.0106.00.99323.850.612.960red5.27183283829591
74.80.210.2110.20.03717.0112.00.993243.660.4812.271white5.71383655348769
84.90.3350.141.30.03669.0168.00.992123.470.4610.466666666666750white5.61420883859505
94.90.420.02.10.04816.042.00.991543.710.7414.071red5.82728618790732
105.00.240.212.20.03931.0100.00.990983.690.6211.760white6.23676358430708
115.00.270.324.50.03258.0178.00.989563.450.3112.671white6.40536563044835
125.00.270.41.20.07642.0124.00.992043.320.4710.160white5.68000591388113
135.00.330.161.50.04910.097.00.99173.480.4410.760white5.86540259296358
145.00.330.184.60.03240.0124.00.991143.180.411.060white6.38927732246673
155.00.350.257.80.03124.0116.00.992413.390.411.360white5.77099544710246
165.00.350.257.80.03124.0116.00.992413.390.411.360white5.77099544710246
175.00.440.0418.60.03938.0128.00.99853.370.5710.260white5.62828607302533
185.00.4550.181.90.03633.0106.00.987463.210.8314.071white6.31622061319733
195.00.740.01.20.04116.046.00.992584.010.5912.560red5.51864670498941
205.10.140.250.70.03915.089.00.99193.220.439.260white6.23676358430708
215.10.250.361.30.03540.078.00.98913.230.6412.171white6.30005289260713
225.10.290.288.30.02627.0107.00.993083.360.3711.060white5.97294677993842
235.10.290.288.30.02627.0107.00.993083.360.3711.060white5.97294677993842
245.10.30.32.30.04840.0150.00.989443.290.4612.260white5.99506581279796
255.10.310.30.90.03728.0152.00.9923.540.5610.160white5.94103412101083
265.10.330.221.60.02718.089.00.98933.510.3812.571white6.31622061319733
275.10.330.221.60.02718.089.00.98933.510.3812.571white6.31622061319733
285.10.330.276.70.02244.0129.00.992213.360.3911.071white5.94103412101083
295.10.350.266.80.03436.0120.00.991883.380.411.560white6.45057781635967
305.10.390.211.70.02715.072.00.98943.50.4512.560white6.31622061319733
315.10.510.182.10.04216.0101.00.99243.460.8712.971red5.7105812119026
325.10.520.062.70.05230.079.00.99323.320.439.350white5.45053454938001
335.10.5850.01.70.04414.086.00.992643.560.9412.971red5.60502448276719
345.20.1550.331.60.02813.059.00.989753.30.8411.981white6.30005289260713
355.20.220.466.20.06641.0187.00.993623.190.429.7333333333333350white5.87022924082098
365.20.240.157.10.04332.0134.00.993783.240.489.960white5.62828607302533
375.20.310.365.10.03146.0145.00.98973.140.3112.471white6.40536563044835
385.20.440.041.40.03643.0119.00.98943.360.3312.181white6.31622061319733
395.20.6450.02.150.0815.028.00.994443.780.6112.560red5.40530832036396
405.30.210.290.70.02811.066.00.992153.30.49.850white6.04579767817583
415.30.30.164.20.02937.0100.00.99053.30.3611.881white6.38927732246673
425.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.97294677993842
435.30.310.3810.50.03153.0140.00.993213.340.4611.760white5.97294677993842
445.30.760.032.70.04327.093.00.99323.340.389.250white5.51864670498941
455.40.150.322.50.03710.051.00.988783.040.5812.660white6.30005289260713
465.40.180.244.80.04130.0113.00.994453.420.49.460white5.72931793535308
475.40.290.381.20.02931.0132.00.988953.280.3612.460white6.30005289260713
485.40.310.473.00.05346.0144.00.99313.290.7610.050white5.69830113217635
495.40.330.314.00.0327.0108.00.990313.30.4312.271white6.40536563044835
505.40.3750.43.30.05429.0147.00.994823.420.529.150white5.66018472712009
515.40.460.152.10.02629.0130.00.989533.390.7713.481white6.31622061319733
525.40.50.135.00.02812.0107.00.990793.480.8813.571white6.38927732246673
535.40.580.081.90.05920.031.00.994843.50.6410.260red5.42360353865918
545.50.120.331.00.03823.0131.00.991643.250.459.850white6.22059586371688
555.50.170.232.90.03910.0108.00.992433.280.510.050white5.78479244845648
565.50.230.192.20.04439.0161.00.992093.190.4310.460white5.73908278817488
575.50.3350.32.50.07127.0128.00.99243.140.519.660white5.68000591388113
585.50.420.091.60.01918.068.00.99063.330.5111.471white6.23676358430708
595.60.180.271.70.0331.0103.00.988923.350.3712.960white6.30005289260713
605.60.180.581.250.03429.0129.00.989843.510.612.071white6.30005289260713
615.60.190.391.10.04317.067.00.99183.230.5310.360white6.22059586371688
625.60.2050.1612.550.05131.0115.00.995643.40.3810.860white5.71877843344105
635.60.210.41.30.04181.0147.00.99013.220.9511.681white6.30005289260713
645.60.2350.291.20.04733.0127.00.9913.340.511.071white5.91560878390772
655.60.240.342.00.04114.073.00.989813.040.4511.671white6.30005289260713
665.60.250.263.60.03718.0115.00.99043.420.512.660white6.37310960187653
675.60.2550.5710.70.05666.0171.00.994643.250.6110.471white5.69830113217635
685.60.260.511.40.02925.093.00.994283.230.4910.560white5.83023740586128
695.60.280.273.90.04352.0158.00.992023.350.4410.771white5.94103412101083
705.60.290.050.80.03811.030.00.99243.360.359.250white5.73908278817488
715.60.2950.22.20.04918.0134.00.993783.210.6810.050white5.51715253070855
725.60.310.7813.90.07423.092.00.996773.390.4810.560red5.61601680633055
735.60.350.145.00.04648.0198.00.99373.30.7110.350white5.68360827507148
745.60.390.244.70.03427.077.00.99063.280.3612.750white6.38927732246673
755.60.420.342.40.02234.097.00.989153.220.3812.871white6.30005289260713
765.60.460.244.80.04224.072.00.99083.290.3712.660white6.38927732246673
775.60.490.134.50.03917.0116.00.99073.420.913.771white6.38927732246673
785.60.620.031.50.086.013.00.994983.660.6210.140red5.40530832036396
795.60.660.02.20.0873.011.00.993783.710.6312.871red5.40530832036396
805.70.10.271.30.04721.0100.00.99283.270.469.550white5.8885244591162
815.70.120.265.50.03421.099.00.993243.090.579.960white6.04579767817583
825.70.160.321.20.0367.089.00.991113.260.4811.050white6.22059586371688
835.70.20.2413.80.04744.0112.00.998372.970.668.860white5.71877843344105
845.70.220.216.00.04441.0113.00.998623.220.468.960white5.69600112899039
855.70.220.216.00.04441.0113.00.998623.220.468.960white5.69600112899039
865.70.220.216.00.04441.0113.00.998623.220.468.960white5.69600112899039
875.70.220.216.00.04441.0113.00.998623.220.468.960white5.69600112899039
885.70.220.2216.650.04439.0110.00.998553.240.489.060white5.69600112899039
895.70.220.2216.650.04439.0110.00.998553.240.489.060white5.69600112899039
905.70.2450.331.10.04928.0150.00.99273.130.429.350white5.69830113217635
915.70.260.2417.80.05923.0124.00.997733.30.510.150white5.4782249640689
925.70.260.2510.40.027.057.00.9943.390.3710.650white5.62828607302533
935.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.97294677993842
945.70.2650.286.90.03646.0150.00.992993.360.4410.871white5.97294677993842
955.70.320.181.40.02926.0104.00.99063.440.3711.060white6.23676358430708
965.70.370.31.10.02924.088.00.988833.180.3911.760white6.30005289260713
975.70.3850.0412.60.03422.0115.00.99643.280.639.960white5.62828607302533
985.70.460.461.40.0431.0169.00.99323.130.478.850white5.91253254473856
995.80.120.211.30.05635.0121.00.99083.320.3311.460white5.93042307241773
1005.80.130.265.10.03919.0103.00.994783.360.479.360white5.99032316507243
Rows: 1-100 | Columns: 15

Note

Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the vDataFrame to the predict() function, but in this case, it’s essential that the column names of the vDataFrame match the predictors and response name in the model.

Plots

Tree models can be visualized by drawing their tree plots. For more examples, check out Machine Learning - Tree Plots.

model.plot_tree()
../_images/machine_learning_vertica_rfreg.png

Note

The above example may not render properly in the doc because of the huge size of the tree. But it should render nicely in jupyter environment.

In order to plot graph using graphviz separately, you can extract the graphviz DOT file code as follows:

model.to_graphviz()
Out[5]: 'digraph Tree {\ngraph [bgcolor="#FFFFFFDD"];\n0 [label="\\"chlorides\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n0 -> 1 [label="<= 0.046625", color="#000000", fontcolor="#000000"]\n0 -> 2 [label="> 0.046625", color="#000000", fontcolor="#000000"]\n1 [label="\\"fixed_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n1 -> 3 [label="<= 7.55625", color="#000000", fontcolor="#000000"]\n1 -> 4 [label="> 7.55625", color="#000000", fontcolor="#000000"]\n2 [label="\\"chlorides\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n2 -> 5 [label="<= 0.065437", color="#000000", fontcolor="#000000"]\n2 -> 6 [label="> 0.065437", color="#000000", fontcolor="#000000"]\n3 [label="\\"volatile_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n3 -> 7 [label="<= 0.595625", color="#000000", fontcolor="#000000"]\n3 -> 8 [label="> 0.595625", color="#000000", fontcolor="#000000"]\n4 [label="\\"density\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n4 -> 9 [label="<= 0.991991", color="#000000", fontcolor="#000000"]\n4 -> 10 [label="> 0.991991", color="#000000", fontcolor="#000000"]\n5 [label="\\"fixed_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n5 -> 11 [label="<= 6.459375", color="#000000", fontcolor="#000000"]\n5 -> 12 [label="> 6.459375", color="#000000", fontcolor="#000000"]\n6 [label="\\"fixed_acidity\\"", shape="box", style="filled", fillcolor="#FFFFFFDD", fontcolor="#000000", color="#000000"]\n6 -> 13 [label="<= 9.384375", color="#000000", fontcolor="#000000"]\n6 -> 14 [label="> 9.384375", color="#000000", fontcolor="#000000"]\n7 [label="6.086", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n8 [label="5.222222", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n9 [label="6.058824", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n10 [label="5.586592", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n11 [label="5.567568", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n12 [label="5.728543", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n13 [label="5.384615", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n14 [label="5.832117", fillcolor="#FFFFFFDD", fontcolor="#000000", shape="none", color="#000000"]\n}'

This string can then be copied into a DOT file which can beparsed by graphviz.

Contour plot is another useful plot that can be produced for models with two predictors.

model.contour()

Important

Machine learning models with two predictors can usually benefit from their own contour plot. This visual representation aids in exploring predictions and gaining a deeper understanding of how these models perform in different scenarios. Please refer to Contour Plot for more examples.

Model Register

In order to register the model for tracking and versioning:

model.register("model_v1")

Please refer to Model Tracking and Versioning for more details on model tracking and versioning.

Model Exporting

To Memmodel

model.to_memmodel()

Note

MemModel objects serve as in-memory representations of machine learning models. They can be used for both in-database and in-memory prediction tasks. These objects can be pickled in the same way that you would pickle a scikit-learn model.

The following methods for exporting the model use MemModel, and it is recommended to use MemModel directly.

To SQL

You can get the SQL code by:

model.to_sql()
Out[6]: '((CASE WHEN "chlorides" < 0.046625 THEN (CASE WHEN "fixed_acidity" < 7.55625 THEN (CASE WHEN "volatile_acidity" < 0.595625 THEN 6.086 ELSE 5.222222 END) ELSE (CASE WHEN "density" < 0.991991 THEN 6.058824 ELSE 5.586592 END) END) ELSE (CASE WHEN "chlorides" < 0.065437 THEN (CASE WHEN "fixed_acidity" < 6.459375 THEN 5.567568 ELSE 5.728543 END) ELSE (CASE WHEN "fixed_acidity" < 9.384375 THEN 5.384615 ELSE 5.832117 END) END) END) + (CASE WHEN "volatile_acidity" < 0.54875 THEN (CASE WHEN "chlorides" < 0.046625 THEN (CASE WHEN "density" < 0.993611 THEN 6.257802 ELSE 5.703057 END) ELSE (CASE WHEN "citric_acid" < 0.259375 THEN 5.471545 ELSE 5.750323 END) END) ELSE (CASE WHEN "fixed_acidity" < 10.846875 THEN (CASE WHEN "citric_acid" < 0.466875 THEN 5.27 ELSE 4.833333 END) ELSE 6.0 END) END) + (CASE WHEN "density" < 0.991991 THEN (CASE WHEN "residual_sugar" < 2.6375 THEN (CASE WHEN "volatile_acidity" < 0.501875 THEN 6.236413 ELSE 5.25 END) ELSE (CASE WHEN "density" < 0.990371 THEN 6.87037 ELSE 6.492308 END) END) ELSE (CASE WHEN "chlorides" < 0.046625 THEN (CASE WHEN "citric_acid" < 0.259375 THEN 5.529412 ELSE 5.941957 END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN 5.934783 ELSE 5.506824 END) END) END) + (CASE WHEN "density" < 0.991991 THEN (CASE WHEN "residual_sugar" < 2.6375 THEN (CASE WHEN "fixed_acidity" < 6.825 THEN 6.324444 ELSE 6.0 END) ELSE (CASE WHEN "residual_sugar" < 6.7125 THEN 6.6 ELSE 7.055556 END) END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN (CASE WHEN "residual_sugar" < 8.75 THEN 5.942446 ELSE 6.1625 END) ELSE (CASE WHEN "citric_acid" < 0.259375 THEN 5.408784 ELSE 5.675676 END) END) END) + (CASE WHEN "density" < 0.991991 THEN (CASE WHEN "density" < 0.990371 THEN (CASE WHEN "volatile_acidity" < 0.54875 THEN 6.526316 ELSE 5.666667 END) ELSE (CASE WHEN "residual_sugar" < 2.6375 THEN 6.013699 ELSE 6.581818 END) END) ELSE (CASE WHEN "citric_acid" < 0.259375 THEN (CASE WHEN "fixed_acidity" < 4.996875 THEN 4.2 ELSE 5.448739 END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN 6.044619 ELSE 5.6537 END) END) END) + (CASE WHEN "chlorides" < 0.046625 THEN (CASE WHEN "fixed_acidity" < 7.55625 THEN (CASE WHEN "density" < 0.991991 THEN 6.418708 ELSE 5.890815 END) ELSE (CASE WHEN "fixed_acidity" < 9.384375 THEN 5.724138 ELSE 4.941176 END) END) ELSE (CASE WHEN "citric_acid" < 0.259375 THEN (CASE WHEN "volatile_acidity" < 0.970625 THEN 5.404255 ELSE 4.090909 END) ELSE (CASE WHEN "density" < 0.995232 THEN 5.898601 ELSE 5.647986 END) END) END) + (CASE WHEN "density" < 0.991991 THEN (CASE WHEN "residual_sugar" < 2.6375 THEN (CASE WHEN "density" < 0.990371 THEN 6.373239 ELSE 6.091286 END) ELSE 6.516854 END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN (CASE WHEN "citric_acid" < 0.259375 THEN 5.58 ELSE 6.046512 END) ELSE (CASE WHEN "volatile_acidity" < 0.455 THEN 5.656566 ELSE 5.37155 END) END) END) + (CASE WHEN "chlorides" < 0.046625 THEN (CASE WHEN "residual_sugar" < 6.7125 THEN (CASE WHEN "fixed_acidity" < 7.55625 THEN 6.21791 ELSE 5.761905 END) ELSE (CASE WHEN "density" < 0.993611 THEN 6.537037 ELSE 5.664688 END) END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN (CASE WHEN "fixed_acidity" < 8.2875 THEN 6.040724 ELSE 5.666667 END) ELSE (CASE WHEN "citric_acid" < 0.259375 THEN 5.390519 ELSE 5.614085 END) END) END) + (CASE WHEN "chlorides" < 0.046625 THEN (CASE WHEN "density" < 0.991991 THEN (CASE WHEN "fixed_acidity" < 8.2875 THEN 6.426501 ELSE 5.363636 END) ELSE (CASE WHEN "citric_acid" < 0.259375 THEN 5.4375 ELSE 5.896721 END) END) ELSE (CASE WHEN "density" < 0.995232 THEN (CASE WHEN "volatile_acidity" < 0.36125 THEN 5.859425 ELSE 5.478261 END) ELSE (CASE WHEN "volatile_acidity" < 0.220625 THEN 6.12037 ELSE 5.470149 END) END) END) + (CASE WHEN "volatile_acidity" < 0.54875 THEN (CASE WHEN "citric_acid" < 0.259375 THEN (CASE WHEN "density" < 0.991991 THEN 6.294872 ELSE 5.4573 END) ELSE (CASE WHEN "chlorides" < 0.046625 THEN 6.133195 ELSE 5.800244 END) END) ELSE (CASE WHEN "density" < 0.991991 THEN (CASE WHEN "residual_sugar" < 2.6375 THEN 5.375 ELSE 6.666667 END) ELSE (CASE WHEN "citric_acid" < 0.155625 THEN 5.389535 ELSE 5.120567 END) END) END)) / 10'

To Python

To obtain the prediction function in Python syntax, use the following code:

X = [[4.2, 0.17, 0.36, 1.8, 0.029, 0.9899]]

model.to_python()(X)
Out[8]: array([6.3000528])

Hint

The to_python() method is used to retrieve predictions, probabilities, or cluster distances. For specific details on how to use this method for different model types, refer to the relevant documentation for each model.

__init__(name: str = None, overwrite_model: bool = False, n_estimators: int = 10, max_features: Literal['auto', 'max'] | int = 'auto', max_leaf_nodes: Annotated[int | float | Decimal, 'Python Numbers'] = 1000000000.0, sample: float = 0.632, max_depth: int = 5, min_samples_leaf: int = 1, min_info_gain: Annotated[int | float | Decimal, 'Python Numbers'] = 0.0, nbins: int = 32) None

Must be overridden in the child class

Methods

__init__([name, overwrite_model, ...])

Must be overridden in the child class

contour([nbins, chart])

Draws the model's contour plot.

deploySQL([X])

Returns the SQL code needed to deploy the model.

does_model_exists(name[, raise_error, ...])

Checks whether the model is stored in the Vertica database.

drop()

Drops the model from the Vertica database.

export_models(name, path[, kind])

Exports machine learning models.

features_importance([tree_id, show, chart])

Computes the model's features importance.

fit(input_relation, X, y[, test_relation, ...])

Trains the model.

get_attributes([attr_name])

Returns the model attributes.

get_match_index(x, col_list[, str_check])

Returns the matching index.

get_params()

Returns the parameters of the model.

get_plotting_lib([class_name, chart, ...])

Returns the first available library (Plotly, Matplotlib, or Highcharts) to draw a specific graphic.

get_score([tree_id])

Returns the feature importance metrics for the input tree.

get_tree([tree_id])

Returns a table with all the input tree information.

get_vertica_attributes([attr_name])

Returns the model Vertica attributes.

import_models(path[, schema, kind])

Imports machine learning models.

plot([max_nb_points, chart])

Draws the model.

plot_tree([tree_id, pic_path])

Draws the input tree.

predict(vdf[, X, name, inplace])

Predicts using the input relation.

register(registered_name[, raise_error])

Registers the model and adds it to in-DB Model versioning environment with a status of 'under_review'.

regression_report([metrics])

Computes a regression report

report([metrics])

Computes a regression report

score([metric])

Computes the model score.

set_params([parameters])

Sets the parameters of the model.

summarize()

Summarizes the model.

to_binary(path)

Exports the model to the Vertica Binary format.

to_graphviz([tree_id, classes_color, ...])

Returns the code for a Graphviz tree.

to_memmodel()

Converts the model to an InMemory object that can be used for different types of predictions.

to_pmml(path)

Exports the model to PMML.

to_python([return_proba, ...])

Returns the Python function needed for in-memory scoring without using built-in Vertica functions.

to_sql([X, return_proba, ...])

Returns the SQL code needed to deploy the model without using built-in Vertica functions.

to_tf(path)

Exports the model to the Frozen Graph format (TensorFlow).

Attributes