
verticapy.machine_learning.vertica.tree.DummyTreeClassifier¶
- class verticapy.machine_learning.vertica.tree.DummyTreeClassifier(name: str = None, overwrite_model: bool = False)¶
A classifier that overfits the training data. These models are typically used as a control to compare with your other models.
Parameters¶
- name: str, optional
Name of the model. The model is stored in the database.
- overwrite_model: bool, optional
If set to
True
, training a model with the same name as an existing model overwrites the existing model.
Attributes¶
Many attributes are created during the fitting phase.
- trees_: list of one BinaryTreeClassifier
One tree model which is instance of
BinaryTreeClassifier
. It possess various attributes. For more detailed information, refer to the documentation forBinaryTreeClassifier()
.- features_importance_: numpy.array
The importance of features. It is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them. It is necessary to use the
features_importance()
method to compute it initially, and the computed values will be subsequently utilized for subsequent calls.- classes_: numpy.array
The classes labels.
Note
All attributes can be accessed using the
get_attributes()
method.Note
Several other attributes can be accessed by using the
get_vertica_attributes()
method.Examples¶
The following examples provide a basic understanding of usage. For more detailed examples, please refer to the Machine Learning or the Examples section on the website.
Important
Many tree-based models inherit from the
RandomForest
base class, and it’s recommended to use it directly for access to a wider range of options.Load data for machine learning¶
We import
verticapy
:import verticapy as vp
Hint
By assigning an alias to
verticapy
, we mitigate the risk of code collisions with other libraries. This precaution is necessary because verticapy uses commonly known function names like “average” and “median”, which can potentially lead to naming conflicts. The use of an alias ensures that the functions fromverticapy
are used as intended without interfering with functions from other libraries.For this example, we will use the winequality dataset.
import verticapy.datasets as vpd data = vpd.load_winequality()
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolor1 3.8 0.31 0.02 11.1 0.036 20.0 114.0 0.99248 3.75 0.44 12.4 6 0 white 2 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 3 4.2 0.17 0.36 1.8 0.029 93.0 161.0 0.98999 3.65 0.89 12.0 7 1 white 4 4.2 0.215 0.23 5.1 0.041 64.0 157.0 0.99688 3.42 0.44 8.0 3 0 white 5 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 6 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 7 4.4 0.54 0.09 5.1 0.038 52.0 97.0 0.99022 3.41 0.4 12.2 7 1 white 8 4.5 0.19 0.21 0.95 0.033 89.0 159.0 0.99332 3.34 0.42 8.0 5 0 white 9 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 10 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 11 4.7 0.145 0.29 1.0 0.042 35.0 90.0 0.9908 3.76 0.49 11.3 6 0 white 12 4.7 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.5 5 0 white 13 4.7 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 14 4.7 0.6 0.17 2.3 0.058 17.0 106.0 0.9932 3.85 0.6 12.9 6 0 red 15 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 16 4.7 0.785 0.0 3.4 0.036 23.0 134.0 0.98981 3.53 0.92 13.8 6 0 white 17 4.8 0.13 0.32 1.2 0.042 40.0 98.0 0.9898 3.42 0.64 11.8 7 1 white 18 4.8 0.17 0.28 2.9 0.03 22.0 111.0 0.9902 3.38 0.34 11.3 7 1 white 19 4.8 0.21 0.21 10.2 0.037 17.0 112.0 0.99324 3.66 0.48 12.2 7 1 white 20 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 21 4.8 0.26 0.23 10.6 0.034 23.0 111.0 0.99274 3.46 0.28 11.5 7 1 white 22 4.8 0.29 0.23 1.1 0.044 38.0 180.0 0.98924 3.28 0.34 11.9 6 0 white 23 4.8 0.33 0.0 6.5 0.028 34.0 163.0 0.9937 3.35 0.61 9.9 5 0 white 24 4.8 0.34 0.0 6.5 0.028 33.0 163.0 0.9939 3.36 0.61 9.9 6 0 white 25 4.8 0.65 0.12 1.1 0.013 4.0 10.0 0.99246 3.32 0.36 13.5 4 0 white 26 4.9 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 27 4.9 0.33 0.31 1.2 0.016 39.0 150.0 0.98713 3.33 0.59 14.0 8 1 white 28 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 29 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 30 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 31 4.9 0.345 0.34 1.0 0.068 32.0 143.0 0.99138 3.24 0.4 10.1 5 0 white 32 4.9 0.42 0.0 2.1 0.048 16.0 42.0 0.99154 3.71 0.74 14.0 7 1 red 33 4.9 0.47 0.17 1.9 0.035 60.0 148.0 0.98964 3.27 0.35 11.5 6 0 white 34 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 35 5.0 0.2 0.4 1.9 0.015 20.0 98.0 0.9897 3.37 0.55 12.05 6 0 white 36 5.0 0.235 0.27 11.75 0.03 34.0 118.0 0.9954 3.07 0.5 9.4 6 0 white 37 5.0 0.24 0.19 5.0 0.043 17.0 101.0 0.99438 3.67 0.57 10.0 5 0 white 38 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 39 5.0 0.24 0.34 1.1 0.034 49.0 158.0 0.98774 3.32 0.32 13.1 7 1 white 40 5.0 0.255 0.22 2.7 0.043 46.0 153.0 0.99238 3.75 0.76 11.3 6 0 white 41 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 42 5.0 0.27 0.32 4.5 0.032 58.0 178.0 0.98956 3.45 0.31 12.6 7 1 white 43 5.0 0.27 0.4 1.2 0.076 42.0 124.0 0.99204 3.32 0.47 10.1 6 0 white 44 5.0 0.29 0.54 5.7 0.035 54.0 155.0 0.98976 3.27 0.34 12.9 8 1 white 45 5.0 0.3 0.33 3.7 0.03 54.0 173.0 0.9887 3.36 0.3 13.0 7 1 white 46 5.0 0.31 0.0 6.4 0.046 43.0 166.0 0.994 3.3 0.63 9.9 6 0 white 47 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 48 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 49 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 50 5.0 0.33 0.18 4.6 0.032 40.0 124.0 0.99114 3.18 0.4 11.0 6 0 white 51 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 52 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 53 5.0 0.35 0.25 7.8 0.031 24.0 116.0 0.99241 3.39 0.4 11.3 6 0 white 54 5.0 0.38 0.01 1.6 0.048 26.0 60.0 0.99084 3.7 0.75 14.0 6 0 red 55 5.0 0.4 0.5 4.3 0.046 29.0 80.0 0.9902 3.49 0.66 13.6 6 0 red 56 5.0 0.42 0.24 2.0 0.06 19.0 50.0 0.9917 3.72 0.74 14.0 8 1 red 57 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 58 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 59 5.0 0.55 0.14 8.3 0.032 35.0 164.0 0.9918 3.53 0.51 12.5 8 1 white 60 5.0 0.61 0.12 1.3 0.009 65.0 100.0 0.9874 3.26 0.37 13.5 5 0 white 61 5.0 0.74 0.0 1.2 0.041 16.0 46.0 0.99258 4.01 0.59 12.5 6 0 red 62 5.0 1.02 0.04 1.4 0.045 41.0 85.0 0.9938 3.75 0.48 10.5 4 0 red 63 5.0 1.04 0.24 1.6 0.05 32.0 96.0 0.9934 3.74 0.62 11.5 5 0 red 64 5.1 0.11 0.32 1.6 0.028 12.0 90.0 0.99008 3.57 0.52 12.2 6 0 white 65 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 66 5.1 0.165 0.22 5.7 0.047 42.0 146.0 0.9934 3.18 0.55 9.9 6 0 white 67 5.1 0.21 0.28 1.4 0.047 48.0 148.0 0.99168 3.5 0.49 10.4 5 0 white 68 5.1 0.23 0.18 1.0 0.053 13.0 99.0 0.98956 3.22 0.39 11.5 5 0 white 69 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 70 5.1 0.26 0.33 1.1 0.027 46.0 113.0 0.98946 3.35 0.43 11.4 7 1 white 71 5.1 0.26 0.34 6.4 0.034 26.0 99.0 0.99449 3.23 0.41 9.2 6 0 white 72 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 73 5.1 0.29 0.28 8.3 0.026 27.0 107.0 0.99308 3.36 0.37 11.0 6 0 white 74 5.1 0.3 0.3 2.3 0.048 40.0 150.0 0.98944 3.29 0.46 12.2 6 0 white 75 5.1 0.305 0.13 1.75 0.036 17.0 73.0 0.99 3.4 0.51 12.3333333333333 5 0 white 76 5.1 0.31 0.3 0.9 0.037 28.0 152.0 0.992 3.54 0.56 10.1 6 0 white 77 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 78 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 79 5.1 0.33 0.22 1.6 0.027 18.0 89.0 0.9893 3.51 0.38 12.5 7 1 white 80 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 81 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 82 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 83 5.1 0.35 0.26 6.8 0.034 36.0 120.0 0.99188 3.38 0.4 11.5 6 0 white 84 5.1 0.39 0.21 1.7 0.027 15.0 72.0 0.9894 3.5 0.45 12.5 6 0 white 85 5.1 0.42 0.0 1.8 0.044 18.0 88.0 0.99157 3.68 0.73 13.6 7 1 red 86 5.1 0.42 0.01 1.5 0.017 25.0 102.0 0.9894 3.38 0.36 12.3 7 1 white 87 5.1 0.47 0.02 1.3 0.034 18.0 44.0 0.9921 3.9 0.62 12.8 6 0 red 88 5.1 0.51 0.18 2.1 0.042 16.0 101.0 0.9924 3.46 0.87 12.9 7 1 red 89 5.1 0.52 0.06 2.7 0.052 30.0 79.0 0.9932 3.32 0.43 9.3 5 0 white 90 5.1 0.585 0.0 1.7 0.044 14.0 86.0 0.99264 3.56 0.94 12.9 7 1 red 91 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 92 5.2 0.155 0.33 1.6 0.028 13.0 59.0 0.98975 3.3 0.84 11.9 8 1 white 93 5.2 0.16 0.34 0.8 0.029 26.0 77.0 0.99155 3.25 0.51 10.1 6 0 white 94 5.2 0.17 0.27 0.7 0.03 11.0 68.0 0.99218 3.3 0.41 9.8 5 0 white 95 5.2 0.185 0.22 1.0 0.03 47.0 123.0 0.99218 3.55 0.44 10.15 6 0 white 96 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 97 5.2 0.21 0.31 1.7 0.048 17.0 61.0 0.98953 3.24 0.37 12.0 7 1 white 98 5.2 0.22 0.46 6.2 0.066 41.0 187.0 0.99362 3.19 0.42 9.73333333333333 5 0 white 99 5.2 0.24 0.15 7.1 0.043 32.0 134.0 0.99378 3.24 0.48 9.9 6 0 white 100 5.2 0.24 0.45 3.8 0.027 21.0 128.0 0.992 3.55 0.49 11.2 8 1 white Rows: 1-100 | Columns: 14Note
VerticaPy offers a wide range of sample datasets that are ideal for training and testing purposes. You can explore the full list of available datasets in the Datasets, which provides detailed information on each dataset and how to use them effectively. These datasets are invaluable resources for honing your data analysis and machine learning skills within the VerticaPy environment.
You can easily divide your dataset into training and testing subsets using the
vDataFrame.
train_test_split()
method. This is a crucial step when preparing your data for machine learning, as it allows you to evaluate the performance of your models accurately.data = vpd.load_winequality() train, test = data.train_test_split(test_size = 0.2)
Warning
In this case, VerticaPy utilizes seeded randomization to guarantee the reproducibility of your data split. However, please be aware that this approach may lead to reduced performance. For a more efficient data split, you can use the
vDataFrame.
to_db()
method to save your results intotables
ortemporary tables
. This will help enhance the overall performance of the process.Balancing the Dataset¶
In VerticaPy, balancing a dataset to address class imbalances is made straightforward through the
balance()
function within thepreprocessing
module. This function enables users to rectify skewed class distributions efficiently. By specifying the target variable and setting parameters like the method for balancing, users can effortlessly achieve a more equitable representation of classes in their dataset. Whether opting for over-sampling, under-sampling, or a combination of both, VerticaPy’sbalance()
function streamlines the process, empowering users to enhance the performance and fairness of their machine learning models trained on imbalanced data.To balance the dataset, use the following syntax.
from verticapy.machine_learning.vertica.preprocessing import balance balanced_train = balance( name = "my_schema.train_balanced", input_relation = train, y = "good", method = "hybrid", )
Note
With this code, a table named train_balanced is created in the my_schema schema. It can then be used to train the model. In the rest of the example, we will work with the full dataset.
Hint
Balancing the dataset is a crucial step in improving the accuracy of machine learning models, particularly when faced with imbalanced class distributions. By addressing disparities in the number of instances across different classes, the model becomes more adept at learning patterns from all classes rather than being biased towards the majority class. This, in turn, enhances the model’s ability to make accurate predictions for under-represented classes. The balanced dataset ensures that the model is not dominated by the majority class and, as a result, leads to more robust and unbiased model performance. Therefore, by employing techniques such as over-sampling, under-sampling, or a combination of both during dataset preparation, practitioners can significantly contribute to achieving higher accuracy and better generalization of their machine learning models.
Model Initialization¶
First we import the
DummyTreeClassifier
model:from verticapy.machine_learning.vertica import DummyTreeClassifier
Then we can create the model:
model = DummyTreeClassifier()
Hint
In
verticapy
1.0.x and higher, you do not need to specify the model name, as the name is automatically assigned. If you need to re-use the model, you can fetch the model name from the model’s attributes.Important
The model name is crucial for the model management system and versioning. It’s highly recommended to provide a name if you plan to reuse the model later.
Model Training¶
We can now fit the model:
model.fit( train, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "good", test, ) =========== call_string =========== SELECT rf_classifier('"public"."_verticapy_tmp_randomforestclassifier_v_demo_1d56aa7855a511ef880f0242ac120002_"', '"public"."_verticapy_tmp_view_v_demo_1d65876455a511ef880f0242ac120002_"', 'good', '"fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density"' USING PARAMETERS exclude_columns='', ntree=1, mtry=6, sampling_size=1, max_depth=100, max_breadth=1000000000, min_leaf_size=1, min_info_gain=0, nbins=1000); ======= details ======= predictor | type ----------------+---------------- fixed_acidity |float or numeric volatile_acidity|float or numeric citric_acid |float or numeric residual_sugar |float or numeric chlorides |float or numeric density |float or numeric =============== Additional Info =============== Name |Value ------------------+----- tree_count | 1 rejected_row_count| 0 accepted_row_count|5197
Important
To train a model, you can directly use the
vDataFrame
or the name of the relation stored in the database. The test set is optional and is only used to compute the test metrics. Inverticapy
, we don’t work usingX
matrices andy
vectors. Instead, we work directly with lists of predictors and the response name.Features Importance¶
We can conveniently get the features importance:
result = model.features_importance()
Note
In models such as
RandomForest
, feature importance is calculated using the MDI (Mean Decreased Impurity). To determine the final score, VerticaPy sums the scores of each tree, normalizes them and applies an activation function to scale them.Metrics¶
We can get the entire report using:
model.report()
value auc 0.7355160393593084 prc_auc 0.6080504991192017 accuracy 0.8123076923076923 log_loss 16.8923076923077 precision 0.53 recall 0.6068702290076335 f1_score 0.5658362989323843 mcc 0.4484759721689103 informedness 0.4710320787186162 markedness 0.42700000000000005 csi 0.3945409429280397 Rows: 1-11 | Columns: 2Important
Most metrics are computed using a single SQL query, but some of them might require multiple SQL queries. Selecting only the necessary metrics in the report can help optimize performance. E.g.
model.report(metrics = ["auc", "accuracy"])
.For classification models, we can easily modify the
cutoff
to observe the effect on different metrics:model.report(cutoff = 0.2)
value auc 0.7355160393593084 prc_auc 0.6080504991192017 accuracy 0.8123076923076923 log_loss 16.8923076923077 precision 0.53 recall 0.6068702290076335 f1_score 0.5658362989323843 mcc 0.4484759721689103 informedness 0.4710320787186162 markedness 0.42700000000000005 csi 0.3945409429280397 Rows: 1-11 | Columns: 2You can also use the
score()
function to compute any classification metric. The default metric is the accuracy:model.score() Out[3]: 0.8123076923076923
Prediction¶
Prediction is straight-forward:
model.predict( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolorAbcprediction1 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 1 2 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 1 3 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 1 4 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 1 5 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 0 6 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 0 7 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 0 8 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 0 9 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 1 10 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 1 11 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 0 12 5.0 0.33 0.23 11.8 0.03 23.0 158.0 0.99322 3.41 0.64 11.8 6 0 white 0 13 5.0 0.44 0.04 18.6 0.039 38.0 128.0 0.9985 3.37 0.57 10.2 6 0 white 0 14 5.0 0.455 0.18 1.9 0.036 33.0 106.0 0.98746 3.21 0.83 14.0 7 1 white 1 15 5.1 0.14 0.25 0.7 0.039 15.0 89.0 0.9919 3.22 0.43 9.2 6 0 white 0 16 5.1 0.25 0.36 1.3 0.035 40.0 78.0 0.9891 3.23 0.64 12.1 7 1 white 1 17 5.1 0.33 0.27 6.7 0.022 44.0 129.0 0.99221 3.36 0.39 11.0 7 1 white 0 18 5.2 0.2 0.27 3.2 0.047 16.0 93.0 0.99235 3.44 0.53 10.1 7 1 white 0 19 5.2 0.285 0.29 5.15 0.035 64.0 138.0 0.9895 3.19 0.34 12.4 8 1 white 0 20 5.2 0.34 0.0 1.8 0.05 27.0 63.0 0.9916 3.68 0.79 14.0 6 0 red 0 21 5.2 0.37 0.33 1.2 0.028 13.0 81.0 0.9902 3.37 0.38 11.7 6 0 white 1 22 5.2 0.405 0.15 1.45 0.038 10.0 44.0 0.99125 3.52 0.4 11.6 4 0 white 0 23 5.2 0.48 0.04 1.6 0.054 19.0 106.0 0.9927 3.54 0.62 12.2 7 1 red 0 24 5.2 0.49 0.26 2.3 0.09 23.0 74.0 0.9953 3.71 0.62 12.2 6 0 red 1 25 5.3 0.21 0.29 0.7 0.028 11.0 66.0 0.99215 3.3 0.4 9.8 5 0 white 0 26 5.3 0.36 0.27 6.3 0.028 40.0 132.0 0.99186 3.37 0.4 11.6 6 0 white 0 27 5.3 0.395 0.07 1.3 0.035 26.0 102.0 0.992 3.5 0.35 10.6 6 0 white 0 28 5.3 0.47 0.11 2.2 0.048 16.0 89.0 0.99182 3.54 0.88 13.5666666666667 7 1 red 1 29 5.4 0.255 0.33 1.2 0.051 29.0 122.0 0.99048 3.37 0.66 11.3 6 0 white 0 30 5.4 0.265 0.28 7.8 0.052 27.0 91.0 0.99432 3.19 0.38 10.4 6 0 white 0 31 5.4 0.27 0.22 4.6 0.022 29.0 107.0 0.98889 3.33 0.54 13.8 6 0 white 0 32 5.4 0.29 0.38 1.2 0.029 31.0 132.0 0.98895 3.28 0.36 12.4 6 0 white 0 33 5.4 0.29 0.47 3.0 0.052 47.0 145.0 0.993 3.29 0.75 10.0 6 0 white 0 34 5.5 0.12 0.33 1.0 0.038 23.0 131.0 0.99164 3.25 0.45 9.8 5 0 white 0 35 5.5 0.14 0.27 4.6 0.029 22.0 104.0 0.9949 3.34 0.44 9.0 5 0 white 0 36 5.5 0.17 0.23 2.9 0.039 10.0 108.0 0.99243 3.28 0.5 10.0 5 0 white 0 37 5.5 0.24 0.32 8.7 0.06 19.0 102.0 0.994 3.27 0.31 10.4 5 0 white 0 38 5.6 0.12 0.26 4.3 0.038 18.0 97.0 0.99477 3.36 0.46 9.2 5 0 white 0 39 5.6 0.15 0.26 5.55 0.051 51.0 139.0 0.99336 3.47 0.5 11.0 6 0 white 0 40 5.6 0.18 0.27 1.7 0.03 31.0 103.0 0.98892 3.35 0.37 12.9 6 0 white 0 41 5.6 0.18 0.58 1.25 0.034 29.0 129.0 0.98984 3.51 0.6 12.0 7 1 white 1 42 5.6 0.185 0.19 7.1 0.048 36.0 110.0 0.99438 3.26 0.41 9.5 6 0 white 0 43 5.6 0.19 0.27 0.9 0.04 52.0 103.0 0.99026 3.5 0.39 11.2 5 0 white 0 44 5.6 0.19 0.46 1.1 0.032 33.0 115.0 0.9909 3.36 0.5 10.4 6 0 white 1 45 5.6 0.245 0.25 9.7 0.032 12.0 68.0 0.994 3.31 0.34 10.5 5 0 white 1 46 5.6 0.28 0.27 3.9 0.043 52.0 158.0 0.99202 3.35 0.44 10.7 7 1 white 1 47 5.6 0.295 0.2 2.2 0.049 18.0 134.0 0.99378 3.21 0.68 10.0 5 0 white 0 48 5.6 0.295 0.26 1.1 0.035 40.0 102.0 0.99154 3.47 0.56 10.6 6 0 white 0 49 5.6 0.31 0.37 1.4 0.074 12.0 96.0 0.9954 3.32 0.58 9.2 5 0 red 0 50 5.6 0.32 0.33 7.4 0.037 25.0 95.0 0.99268 3.25 0.49 11.1 6 0 white 0 51 5.6 0.41 0.22 7.1 0.05 44.0 154.0 0.9931 3.3 0.4 10.5 5 0 white 0 52 5.6 0.41 0.24 1.9 0.034 10.0 53.0 0.98815 3.32 0.5 13.5 7 1 white 1 53 5.6 0.42 0.34 2.4 0.022 34.0 97.0 0.98915 3.22 0.38 12.8 7 1 white 0 54 5.6 0.5 0.09 2.3 0.049 17.0 99.0 0.9937 3.63 0.63 13.0 5 0 red 0 55 5.6 0.54 0.04 1.7 0.049 5.0 13.0 0.9942 3.72 0.58 11.4 5 0 red 0 56 5.6 0.605 0.05 2.4 0.073 19.0 25.0 0.99258 3.56 0.55 12.9 5 0 red 0 57 5.6 0.66 0.0 2.2 0.087 3.0 11.0 0.99378 3.71 0.63 12.8 7 1 red 1 58 5.7 0.1 0.27 1.3 0.047 21.0 100.0 0.9928 3.27 0.46 9.5 5 0 white 1 59 5.7 0.16 0.26 6.3 0.043 28.0 113.0 0.9936 3.06 0.58 9.9 6 0 white 0 60 5.7 0.18 0.26 2.2 0.023 21.0 95.0 0.9893 3.07 0.54 12.3 6 0 white 0 61 5.7 0.2 0.24 13.8 0.047 44.0 112.0 0.99837 2.97 0.66 8.8 6 0 white 0 62 5.7 0.2 0.3 2.5 0.046 38.0 125.0 0.99276 3.34 0.5 9.9 6 0 white 0 63 5.7 0.21 0.25 1.1 0.035 26.0 81.0 0.9902 3.31 0.52 11.4 6 0 white 0 64 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 0 65 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 0 66 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 0 67 5.7 0.22 0.2 16.0 0.044 41.0 113.0 0.99862 3.22 0.46 8.9 6 0 white 0 68 5.7 0.22 0.22 16.65 0.044 39.0 110.0 0.99855 3.24 0.48 9.0 6 0 white 0 69 5.7 0.22 0.28 1.3 0.027 26.0 101.0 0.98948 3.35 0.38 12.5 7 1 white 1 70 5.7 0.23 0.28 9.65 0.025 26.0 121.0 0.9925 3.28 0.38 11.3 6 0 white 0 71 5.7 0.24 0.3 1.3 0.03 25.0 98.0 0.98968 3.37 0.43 12.4 7 1 white 1 72 5.7 0.24 0.47 6.3 0.069 35.0 182.0 0.99391 3.11 0.46 9.75 5 0 white 0 73 5.7 0.25 0.26 12.5 0.049 52.5 106.0 0.99691 3.08 0.45 9.4 6 0 white 0 74 5.7 0.25 0.26 12.5 0.049 52.5 120.0 0.99691 3.08 0.45 9.4 6 0 white 0 75 5.7 0.25 0.27 11.5 0.04 24.0 120.0 0.99411 3.33 0.31 10.8 6 0 white 1 76 5.7 0.26 0.24 17.8 0.059 23.0 124.0 0.99773 3.3 0.5 10.1 5 0 white 0 77 5.7 0.26 0.3 1.8 0.039 30.0 105.0 0.98995 3.48 0.52 12.5 7 1 white 0 78 5.7 0.32 0.18 1.4 0.029 26.0 104.0 0.9906 3.44 0.37 11.0 6 0 white 0 79 5.7 0.32 0.38 4.75 0.033 23.0 94.0 0.991 3.42 0.42 11.8 7 1 white 1 80 5.7 0.32 0.5 2.6 0.049 17.0 155.0 0.9927 3.22 0.64 10.0 6 0 white 0 81 5.7 0.36 0.34 4.2 0.026 21.0 77.0 0.9907 3.41 0.45 11.9 6 0 white 1 82 5.7 0.43 0.3 5.7 0.039 24.0 98.0 0.992 3.54 0.61 12.3 7 1 white 1 83 5.7 0.695 0.06 6.8 0.042 9.0 84.0 0.99432 3.44 0.44 10.2 5 0 white 0 84 5.7 1.13 0.09 1.5 0.172 7.0 19.0 0.994 3.5 0.48 9.8 4 0 red 0 85 5.8 0.13 0.26 5.1 0.039 19.0 103.0 0.99478 3.36 0.47 9.3 6 0 white 0 86 5.8 0.15 0.31 5.9 0.036 7.0 73.0 0.99152 3.2 0.43 11.9 6 0 white 0 87 5.8 0.15 0.32 1.2 0.037 14.0 119.0 0.99137 3.19 0.5 10.2 6 0 white 0 88 5.8 0.15 0.49 1.1 0.048 21.0 98.0 0.9929 3.19 0.48 9.2 5 0 white 1 89 5.8 0.18 0.28 1.3 0.034 9.0 94.0 0.99092 3.21 0.52 11.2 6 0 white 0 90 5.8 0.18 0.37 1.1 0.036 31.0 96.0 0.98942 3.16 0.48 12.0 6 0 white 1 91 5.8 0.19 0.33 4.2 0.038 49.0 133.0 0.99107 3.16 0.42 11.3 7 1 white 1 92 5.8 0.2 0.16 1.4 0.042 44.0 99.0 0.98912 3.23 0.37 12.2 6 0 white 0 93 5.8 0.2 0.24 1.4 0.033 65.0 169.0 0.99043 3.59 0.56 12.3 7 1 white 1 94 5.8 0.22 0.29 0.9 0.034 34.0 89.0 0.98936 3.14 0.36 11.1 7 1 white 0 95 5.8 0.23 0.21 1.5 0.044 21.0 110.0 0.99138 3.3 0.57 11.0 6 0 white 0 96 5.8 0.23 0.31 3.5 0.044 35.0 158.0 0.98998 3.19 0.37 12.1 7 1 white 0 97 5.8 0.24 0.26 10.05 0.039 63.0 162.0 0.99375 3.33 0.5 11.2 6 0 white 0 98 5.8 0.24 0.39 1.5 0.054 37.0 158.0 0.9932 3.21 0.52 9.3 6 0 white 0 99 5.8 0.27 0.26 3.5 0.071 26.0 69.0 0.98994 3.1 0.38 11.5 6 0 white 1 100 5.8 0.28 0.34 4.0 0.031 40.0 99.0 0.9896 3.39 0.39 12.8 7 1 white 1 Rows: 1-100 | Columns: 15Note
Predictions can be made automatically using the test set, in which case you don’t need to specify the predictors. Alternatively, you can pass only the
vDataFrame
to thepredict()
function, but in this case, it’s essential that the column names of thevDataFrame
match the predictors and response name in the model.Probabilities¶
It is also easy to get the model’s probabilities:
model.predict_proba( test, [ "fixed_acidity", "volatile_acidity", "citric_acid", "residual_sugar", "chlorides", "density" ], "prediction", )
123fixed_acidity123volatile_acidity123citric_acid123residual_sugar123chlorides123free_sulfur_dioxide123total_sulfur_dioxide123density123pH123sulphates123alcohol123quality123goodAbccolorAbcpredictionAbcprediction_0Abcprediction_11 3.9 0.225 0.4 4.2 0.03 29.0 118.0 0.989 3.57 0.36 12.8 8 1 white 1 0 1 2 4.4 0.32 0.39 4.3 0.03 31.0 127.0 0.98904 3.46 0.36 12.8 8 1 white 1 0 1 3 4.4 0.46 0.1 2.8 0.024 31.0 111.0 0.98816 3.48 0.34 13.1 6 0 white 1 0 1 4 4.6 0.445 0.0 1.4 0.053 11.0 178.0 0.99426 3.79 0.55 10.2 5 0 white 1 0 1 5 4.6 0.52 0.15 2.1 0.054 8.0 65.0 0.9934 3.9 0.56 13.1 4 0 red 0 1 0 6 4.7 0.67 0.09 1.0 0.02 5.0 9.0 0.98722 3.3 0.34 13.6 5 0 white 0 1 0 7 4.8 0.225 0.38 1.2 0.074 47.0 130.0 0.99132 3.31 0.4 10.3 6 0 white 0 1 0 8 4.9 0.335 0.14 1.3 0.036 69.0 168.0 0.99212 3.47 0.46 10.4666666666667 5 0 white 0 1 0 9 5.0 0.17 0.56 1.5 0.026 24.0 115.0 0.9906 3.48 0.39 10.8 7 1 white 1 0 1 10 5.0 0.24 0.21 2.2 0.039 31.0 100.0 0.99098 3.69 0.62 11.7 6 0 white 1 0 1 11 5.0 0.33 0.16 1.5 0.049 10.0 97.0 0.9917 3.48 0.44 10.7 6 0 white 0 1 0 12 5.0 0.33 0.23