vDataFrame[].astype

In [ ]:
vDataFrame[].astype(dtype)

Converts the vcolumn to the input type.

Parameters

Name Type Optional Description
dtype
str or Python data type
New type. One of the following values:
  • 'json': Converts to a JSON string.
  • 'array': Converts to an array.
  • 'vmap': Converts to a VMap. If converting a delimited string, you can add the header_names as follows: dtype = 'vmap(age,name,date)', where the header_names are age, name, and date.
  • It can also be any Vertica type or Python standard types.

Returns

vDataFrame : self.parent

Example

In [14]:
from verticapy.datasets import load_titanic
titanic = load_titanic()
display(titanic)
123
pclass
Int
123
survived
Int
Abc
Varchar(164)
Abc
sex
Varchar(20)
123
age
Numeric(6,3)
123
sibsp
Int
123
parch
Int
Abc
ticket
Varchar(36)
123
fare
Numeric(10,5)
Abc
cabin
Varchar(30)
Abc
embarked
Varchar(20)
Abc
boat
Varchar(100)
123
body
Int
Abc
Varchar(100)
110male47.010PC 17757227.525C62 C64C[null]124
210male[null]00PC 1731825.925[null]S[null][null]
310male24.001PC 17558247.5208B58 B60C[null][null]
410male25.0001390526.0[null]C[null]148
510male42.00011048926.55D22S[null][null]
610male45.00011305026.55B38S[null][null]
710male46.010W.E.P. 573461.175E31S[null][null]
810male[null]0011379126.55[null]S[null][null]
910male39.000PC 1758029.7A18C[null]133
1010male64.01419950263.0C23 C25 C27S[null][null]
1110male[null]0011377826.55D34S[null][null]
1210male71.000PC 1775434.6542A5C[null][null]
1310male[null]0011379642.4[null]S[null][null]
1410male32.500113503211.5C132C[null]45
1510male41.0101746451.8625D21S[null][null]
1610male[null]0011302826.55C124S[null][null]
1710male28.010PC 1760482.1708[null]C[null][null]
1810male55.00011378730.5C30S[null][null]
1910male37.001PC 1759629.7C118C[null][null]
2010male64.00069326.0[null]S[null]263
2110male28.500PC 1756227.7208D43C[null]189
2210male[null]00PC 17757227.525[null]C[null][null]
2310male56.00011379226.55[null]S[null][null]
2410male24.0101369560.0C31S[null][null]
2510male49.01117421110.8833C68C[null][null]
2610male47.0003696734.0208D46S[null][null]
2710male64.01011081375.25D37C[null][null]
2811male0.9212113781151.55C22 C26S11[null]
2911female53.0201176951.4792C101SD[null]
3011female18.010PC 17757227.525C62 C64C4[null]
3111male80.0002704230.0A23SB[null]
3211male37.0111175152.5542D35S5[null]
3311male26.00011136930.0C148C5[null]
3411female42.000PC 17757227.525[null]C4[null]
3511male25.0101196791.0792B49C7[null]
3611female35.000PC 17760135.6333C99S8[null]
3711female45.000PC 17608262.375[null]C4[null]
3811female22.00111350555.0E33S6[null]
3911female60.0001181376.2917D15C8[null]
4011female14.012113760120.0B96 B98S4[null]
4111female[null]001777027.7208[null]C5[null]
4211male45.000PC 1759429.7A9C7[null]
4311female22.000113781151.55[null]S11[null]
4411female64.002PC 1775683.1583E45C14[null]
4511female36.002WE/P 573571.0B22S7[null]
4611female27.011PC 17558247.5208B58 B60C6[null]
4711female54.0103694778.2667D20C4[null]
4811male43.0101776527.7208D40C5[null]
4911female22.0021356849.5B39C5[null]
5011female35.01011380353.1C123SD[null]
5111male53.00011378028.5C51CB[null]
5211female19.00011205330.0B42S3[null]
5311female58.001PC 17582153.4625C125S3[null]
5411male23.001PC 1775963.3583D10 D12C7[null]
5511male25.0101176555.4417E50C5[null]
5611male[null]001698830.0D45S3[null]
5711female35.01011378952.0[null]S8[null]
5811female[null]101746451.8625D21S8[null]
5911male42.0101175352.5542D19S5[null]
6011female45.0101175352.5542D19S5[null]
6111female39.00024160211.3375[null]S2[null]
6211female16.001PC 1759239.4D28S9[null]
6311female21.0001350277.9583D9S10[null]
6411female18.01011377353.1D30S10[null]
6511male36.000PC 1747326.2875E25S7[null]
6611female37.0101992890.0C78Q14[null]
6711male[null]00F.C. 1299825.7417[null]C7[null]
6811female22.01011377666.6C2S8[null]
6911female30.0001274993.5B73S3[null]
7011female33.000PC 1761327.7208A11C11[null]
7111female54.010PC 1760359.4[null]C6[null]
7211female18.022PC 17608262.375B57 B59 B63 B66C4[null]
7311female48.013PC 17608262.375B57 B59 B63 B66C4[null]
7411male35.000PC 1747526.2875E24S5[null]
7511female23.0102122882.2667B45S7[null]
7611female43.0101177855.4417C116C5[null]
7711female39.01111041379.65E67S8[null]
7811female39.01117421110.8833C68C4[null]
7911female55.000PC 17760135.6333C32C8[null]
8011female31.00236928164.8667C7S8[null]
8120male30.010P/PP 338124.0[null]C[null][null]
8220male30.00024874413.0[null]S[null][null]
8320male57.00024434613.0[null]S[null][null]
8420male51.000S.O.P. 116612.525[null]S[null]174
8520male[null]002398530.0[null]S[null][null]
8620male52.00024873113.5[null]S[null]130
8720male37.010SC/AH 2903726.0[null]S[null]17
8820female29.010SC/AH 2903726.0[null]S[null][null]
8920male29.000W./C. 1426310.5[null]S[null][null]
9020female30.00023724913.0[null]S[null][null]
9120male[null]002398530.0[null]S[null][null]
9220male17.000S.O.C. 1487973.5[null]S[null][null]
9320male18.000C.A. 1518510.5[null]S[null][null]
9420male24.00024872613.5[null]S[null]297
9520male30.00025064613.0[null]S[null]305
9620male52.00025064713.0[null]S[null]19
9720female18.01125065013.0[null]S[null][null]
9820male23.0212910411.5[null]S[null][null]
9920male36.00024296313.0[null]S[null][null]
10020male44.0102670726.0[null]S[null][null]
Rows: 1-100 | Columns: 14
In [15]:
titanic["fare"].dtype()
Out[15]:
'numeric(10,5)'
In [16]:
titanic["fare"].astype(int)
Out[16]:
123
pclass
Int
123
survived
Int
Abc
Varchar(164)
Abc
sex
Varchar(20)
123
age
Numeric(6,3)
123
sibsp
Int
123
parch
Int
Abc
ticket
Varchar(36)
123
fare
Integer
Abc
cabin
Varchar(30)
Abc
embarked
Varchar(20)
Abc
boat
Varchar(100)
123
body
Int
Abc
Varchar(100)
110male47.010PC 17757228C62 C64C[null]124
210male[null]00PC 1731826[null]S[null][null]
310male24.001PC 17558248B58 B60C[null][null]
410male25.0001390526[null]C[null]148
510male42.00011048927D22S[null][null]
610male45.00011305027B38S[null][null]
710male46.010W.E.P. 573461E31S[null][null]
810male[null]0011379127[null]S[null][null]
910male39.000PC 1758030A18C[null]133
1010male64.01419950263C23 C25 C27S[null][null]
1110male[null]0011377827D34S[null][null]
1210male71.000PC 1775435A5C[null][null]
1310male[null]0011379642[null]S[null][null]
1410male32.500113503212C132C[null]45
1510male41.0101746452D21S[null][null]
1610male[null]0011302827C124S[null][null]
1710male28.010PC 1760482[null]C[null][null]
1810male55.00011378731C30S[null][null]
1910male37.001PC 1759630C118C[null][null]
2010male64.00069326[null]S[null]263
2110male28.500PC 1756228D43C[null]189
2210male[null]00PC 17757228[null]C[null][null]
2310male56.00011379227[null]S[null][null]
2410male24.0101369560C31S[null][null]
2510male49.01117421111C68C[null][null]
2610male47.0003696734D46S[null][null]
2710male64.01011081375D37C[null][null]
2811male0.9212113781152C22 C26S11[null]
2911female53.0201176951C101SD[null]
3011female18.010PC 17757228C62 C64C4[null]
3111male80.0002704230A23SB[null]
3211male37.0111175153D35S5[null]
3311male26.00011136930C148C5[null]
3411female42.000PC 17757228[null]C4[null]
3511male25.0101196791B49C7[null]
3611female35.000PC 17760136C99S8[null]
3711female45.000PC 17608262[null]C4[null]
3811female22.00111350555E33S6[null]
3911female60.0001181376D15C8[null]
4011female14.012113760120B96 B98S4[null]
4111female[null]001777028[null]C5[null]
4211male45.000PC 1759430A9C7[null]
4311female22.000113781152[null]S11[null]
4411female64.002PC 1775683E45C14[null]
4511female36.002WE/P 573571B22S7[null]
4611female27.011PC 17558248B58 B60C6[null]
4711female54.0103694778D20C4[null]
4811male43.0101776528D40C5[null]
4911female22.0021356850B39C5[null]
5011female35.01011380353C123SD[null]
5111male53.00011378029C51CB[null]
5211female19.00011205330B42S3[null]
5311female58.001PC 17582153C125S3[null]
5411male23.001PC 1775963D10 D12C7[null]
5511male25.0101176555E50C5[null]
5611male[null]001698830D45S3[null]
5711female35.01011378952[null]S8[null]
5811female[null]101746452D21S8[null]
5911male42.0101175353D19S5[null]
6011female45.0101175353D19S5[null]
6111female39.00024160211[null]S2[null]
6211female16.001PC 1759239D28S9[null]
6311female21.0001350278D9S10[null]
6411female18.01011377353D30S10[null]
6511male36.000PC 1747326E25S7[null]
6611female37.0101992890C78Q14[null]
6711male[null]00F.C. 1299826[null]C7[null]
6811female22.01011377667C2S8[null]
6911female30.0001274994B73S3[null]
7011female33.000PC 1761328A11C11[null]
7111female54.010PC 1760359[null]C6[null]
7211female18.022PC 17608262B57 B59 B63 B66C4[null]
7311female48.013PC 17608262B57 B59 B63 B66C4[null]
7411male35.000PC 1747526E24S5[null]
7511female23.0102122882B45S7[null]
7611female43.0101177855C116C5[null]
7711female39.01111041380E67S8[null]
7811female39.01117421111C68C4[null]
7911female55.000PC 17760136C32C8[null]
8011female31.00236928165C7S8[null]
8120male30.010P/PP 338124[null]C[null][null]
8220male30.00024874413[null]S[null][null]
8320male57.00024434613[null]S[null][null]
8420male51.000S.O.P. 116613[null]S[null]174
8520male[null]002398530[null]S[null][null]
8620male52.00024873114[null]S[null]130
8720male37.010SC/AH 2903726[null]S[null]17
8820female29.010SC/AH 2903726[null]S[null][null]
8920male29.000W./C. 1426311[null]S[null][null]
9020female30.00023724913[null]S[null][null]
9120male[null]002398530[null]S[null][null]
9220male17.000S.O.C. 1487974[null]S[null][null]
9320male18.000C.A. 1518511[null]S[null][null]
9420male24.00024872614[null]S[null]297
9520male30.00025064613[null]S[null]305
9620male52.00025064713[null]S[null]19
9720female18.01125065013[null]S[null][null]
9820male23.0212910412[null]S[null][null]
9920male36.00024296313[null]S[null][null]
10020male44.0102670726[null]S[null][null]
Rows: 1-100 | Columns: 14
In [17]:
titanic["fare"].dtype()
Out[17]:
'integer'
In [18]:
from verticapy.utilities import tablesample

# str -> array
dataset = tablesample({"artists": ["Inna, Alexandra, Reea", "Rihanna, Beyonce"]}).to_vdf()
dataset["artists"].astype("array")
Out[18]:
🛠
artists
Array
1b'["Inna","Alexandra","Reea"]'
2b'["Rihanna","Beyonce"]'
Rows: 1-2 | Column: artists | Type: array
In [19]:
# array -> json
dataset["artists"].astype("json")
Out[19]:
Abc
artists
Varchar
1["Inna","Alexandra","Reea"]
2["Rihanna","Beyonce"]
Rows: 1-2 | Column: artists | Type: varchar