Expand Menu
-
Home / Old / Documentation / vDataFrame / Vcolumn Methods / Astype / Index
vDataFrame[].astype¶
In [ ]:
vDataFrame[].astype(dtype)
Converts the vcolumn to the input type.
Parameters¶
| Name | Type | Optional | Description |
|---|---|---|---|
dtype | str or Python data type | ❌ | New type. One of the following values:
|
In [14]:
from verticapy.datasets import load_titanic
titanic = load_titanic()
display(titanic)
123 pclassInt | 123 survivedInt | Abc Varchar(164) | Abc sexVarchar(20) | 123 ageNumeric(6,3) | 123 sibspInt | 123 parchInt | Abc ticketVarchar(36) | 123 fareNumeric(10,5) | Abc cabinVarchar(30) | Abc embarkedVarchar(20) | Abc boatVarchar(100) | 123 bodyInt | Abc Varchar(100) | |
| 1 | 1 | 0 | male | 47.0 | 1 | 0 | PC 17757 | 227.525 | C62 C64 | C | [null] | 124 | ||
| 2 | 1 | 0 | male | [null] | 0 | 0 | PC 17318 | 25.925 | [null] | S | [null] | [null] | ||
| 3 | 1 | 0 | male | 24.0 | 0 | 1 | PC 17558 | 247.5208 | B58 B60 | C | [null] | [null] | ||
| 4 | 1 | 0 | male | 25.0 | 0 | 0 | 13905 | 26.0 | [null] | C | [null] | 148 | ||
| 5 | 1 | 0 | male | 42.0 | 0 | 0 | 110489 | 26.55 | D22 | S | [null] | [null] | ||
| 6 | 1 | 0 | male | 45.0 | 0 | 0 | 113050 | 26.55 | B38 | S | [null] | [null] | ||
| 7 | 1 | 0 | male | 46.0 | 1 | 0 | W.E.P. 5734 | 61.175 | E31 | S | [null] | [null] | ||
| 8 | 1 | 0 | male | [null] | 0 | 0 | 113791 | 26.55 | [null] | S | [null] | [null] | ||
| 9 | 1 | 0 | male | 39.0 | 0 | 0 | PC 17580 | 29.7 | A18 | C | [null] | 133 | ||
| 10 | 1 | 0 | male | 64.0 | 1 | 4 | 19950 | 263.0 | C23 C25 C27 | S | [null] | [null] | ||
| 11 | 1 | 0 | male | [null] | 0 | 0 | 113778 | 26.55 | D34 | S | [null] | [null] | ||
| 12 | 1 | 0 | male | 71.0 | 0 | 0 | PC 17754 | 34.6542 | A5 | C | [null] | [null] | ||
| 13 | 1 | 0 | male | [null] | 0 | 0 | 113796 | 42.4 | [null] | S | [null] | [null] | ||
| 14 | 1 | 0 | male | 32.5 | 0 | 0 | 113503 | 211.5 | C132 | C | [null] | 45 | ||
| 15 | 1 | 0 | male | 41.0 | 1 | 0 | 17464 | 51.8625 | D21 | S | [null] | [null] | ||
| 16 | 1 | 0 | male | [null] | 0 | 0 | 113028 | 26.55 | C124 | S | [null] | [null] | ||
| 17 | 1 | 0 | male | 28.0 | 1 | 0 | PC 17604 | 82.1708 | [null] | C | [null] | [null] | ||
| 18 | 1 | 0 | male | 55.0 | 0 | 0 | 113787 | 30.5 | C30 | S | [null] | [null] | ||
| 19 | 1 | 0 | male | 37.0 | 0 | 1 | PC 17596 | 29.7 | C118 | C | [null] | [null] | ||
| 20 | 1 | 0 | male | 64.0 | 0 | 0 | 693 | 26.0 | [null] | S | [null] | 263 | ||
| 21 | 1 | 0 | male | 28.5 | 0 | 0 | PC 17562 | 27.7208 | D43 | C | [null] | 189 | ||
| 22 | 1 | 0 | male | [null] | 0 | 0 | PC 17757 | 227.525 | [null] | C | [null] | [null] | ||
| 23 | 1 | 0 | male | 56.0 | 0 | 0 | 113792 | 26.55 | [null] | S | [null] | [null] | ||
| 24 | 1 | 0 | male | 24.0 | 1 | 0 | 13695 | 60.0 | C31 | S | [null] | [null] | ||
| 25 | 1 | 0 | male | 49.0 | 1 | 1 | 17421 | 110.8833 | C68 | C | [null] | [null] | ||
| 26 | 1 | 0 | male | 47.0 | 0 | 0 | 36967 | 34.0208 | D46 | S | [null] | [null] | ||
| 27 | 1 | 0 | male | 64.0 | 1 | 0 | 110813 | 75.25 | D37 | C | [null] | [null] | ||
| 28 | 1 | 1 | male | 0.92 | 1 | 2 | 113781 | 151.55 | C22 C26 | S | 11 | [null] | ||
| 29 | 1 | 1 | female | 53.0 | 2 | 0 | 11769 | 51.4792 | C101 | S | D | [null] | ||
| 30 | 1 | 1 | female | 18.0 | 1 | 0 | PC 17757 | 227.525 | C62 C64 | C | 4 | [null] | ||
| 31 | 1 | 1 | male | 80.0 | 0 | 0 | 27042 | 30.0 | A23 | S | B | [null] | ||
| 32 | 1 | 1 | male | 37.0 | 1 | 1 | 11751 | 52.5542 | D35 | S | 5 | [null] | ||
| 33 | 1 | 1 | male | 26.0 | 0 | 0 | 111369 | 30.0 | C148 | C | 5 | [null] | ||
| 34 | 1 | 1 | female | 42.0 | 0 | 0 | PC 17757 | 227.525 | [null] | C | 4 | [null] | ||
| 35 | 1 | 1 | male | 25.0 | 1 | 0 | 11967 | 91.0792 | B49 | C | 7 | [null] | ||
| 36 | 1 | 1 | female | 35.0 | 0 | 0 | PC 17760 | 135.6333 | C99 | S | 8 | [null] | ||
| 37 | 1 | 1 | female | 45.0 | 0 | 0 | PC 17608 | 262.375 | [null] | C | 4 | [null] | ||
| 38 | 1 | 1 | female | 22.0 | 0 | 1 | 113505 | 55.0 | E33 | S | 6 | [null] | ||
| 39 | 1 | 1 | female | 60.0 | 0 | 0 | 11813 | 76.2917 | D15 | C | 8 | [null] | ||
| 40 | 1 | 1 | female | 14.0 | 1 | 2 | 113760 | 120.0 | B96 B98 | S | 4 | [null] | ||
| 41 | 1 | 1 | female | [null] | 0 | 0 | 17770 | 27.7208 | [null] | C | 5 | [null] | ||
| 42 | 1 | 1 | male | 45.0 | 0 | 0 | PC 17594 | 29.7 | A9 | C | 7 | [null] | ||
| 43 | 1 | 1 | female | 22.0 | 0 | 0 | 113781 | 151.55 | [null] | S | 11 | [null] | ||
| 44 | 1 | 1 | female | 64.0 | 0 | 2 | PC 17756 | 83.1583 | E45 | C | 14 | [null] | ||
| 45 | 1 | 1 | female | 36.0 | 0 | 2 | WE/P 5735 | 71.0 | B22 | S | 7 | [null] | ||
| 46 | 1 | 1 | female | 27.0 | 1 | 1 | PC 17558 | 247.5208 | B58 B60 | C | 6 | [null] | ||
| 47 | 1 | 1 | female | 54.0 | 1 | 0 | 36947 | 78.2667 | D20 | C | 4 | [null] | ||
| 48 | 1 | 1 | male | 43.0 | 1 | 0 | 17765 | 27.7208 | D40 | C | 5 | [null] | ||
| 49 | 1 | 1 | female | 22.0 | 0 | 2 | 13568 | 49.5 | B39 | C | 5 | [null] | ||
| 50 | 1 | 1 | female | 35.0 | 1 | 0 | 113803 | 53.1 | C123 | S | D | [null] | ||
| 51 | 1 | 1 | male | 53.0 | 0 | 0 | 113780 | 28.5 | C51 | C | B | [null] | ||
| 52 | 1 | 1 | female | 19.0 | 0 | 0 | 112053 | 30.0 | B42 | S | 3 | [null] | ||
| 53 | 1 | 1 | female | 58.0 | 0 | 1 | PC 17582 | 153.4625 | C125 | S | 3 | [null] | ||
| 54 | 1 | 1 | male | 23.0 | 0 | 1 | PC 17759 | 63.3583 | D10 D12 | C | 7 | [null] | ||
| 55 | 1 | 1 | male | 25.0 | 1 | 0 | 11765 | 55.4417 | E50 | C | 5 | [null] | ||
| 56 | 1 | 1 | male | [null] | 0 | 0 | 16988 | 30.0 | D45 | S | 3 | [null] | ||
| 57 | 1 | 1 | female | 35.0 | 1 | 0 | 113789 | 52.0 | [null] | S | 8 | [null] | ||
| 58 | 1 | 1 | female | [null] | 1 | 0 | 17464 | 51.8625 | D21 | S | 8 | [null] | ||
| 59 | 1 | 1 | male | 42.0 | 1 | 0 | 11753 | 52.5542 | D19 | S | 5 | [null] | ||
| 60 | 1 | 1 | female | 45.0 | 1 | 0 | 11753 | 52.5542 | D19 | S | 5 | [null] | ||
| 61 | 1 | 1 | female | 39.0 | 0 | 0 | 24160 | 211.3375 | [null] | S | 2 | [null] | ||
| 62 | 1 | 1 | female | 16.0 | 0 | 1 | PC 17592 | 39.4 | D28 | S | 9 | [null] | ||
| 63 | 1 | 1 | female | 21.0 | 0 | 0 | 13502 | 77.9583 | D9 | S | 10 | [null] | ||
| 64 | 1 | 1 | female | 18.0 | 1 | 0 | 113773 | 53.1 | D30 | S | 10 | [null] | ||
| 65 | 1 | 1 | male | 36.0 | 0 | 0 | PC 17473 | 26.2875 | E25 | S | 7 | [null] | ||
| 66 | 1 | 1 | female | 37.0 | 1 | 0 | 19928 | 90.0 | C78 | Q | 14 | [null] | ||
| 67 | 1 | 1 | male | [null] | 0 | 0 | F.C. 12998 | 25.7417 | [null] | C | 7 | [null] | ||
| 68 | 1 | 1 | female | 22.0 | 1 | 0 | 113776 | 66.6 | C2 | S | 8 | [null] | ||
| 69 | 1 | 1 | female | 30.0 | 0 | 0 | 12749 | 93.5 | B73 | S | 3 | [null] | ||
| 70 | 1 | 1 | female | 33.0 | 0 | 0 | PC 17613 | 27.7208 | A11 | C | 11 | [null] | ||
| 71 | 1 | 1 | female | 54.0 | 1 | 0 | PC 17603 | 59.4 | [null] | C | 6 | [null] | ||
| 72 | 1 | 1 | female | 18.0 | 2 | 2 | PC 17608 | 262.375 | B57 B59 B63 B66 | C | 4 | [null] | ||
| 73 | 1 | 1 | female | 48.0 | 1 | 3 | PC 17608 | 262.375 | B57 B59 B63 B66 | C | 4 | [null] | ||
| 74 | 1 | 1 | male | 35.0 | 0 | 0 | PC 17475 | 26.2875 | E24 | S | 5 | [null] | ||
| 75 | 1 | 1 | female | 23.0 | 1 | 0 | 21228 | 82.2667 | B45 | S | 7 | [null] | ||
| 76 | 1 | 1 | female | 43.0 | 1 | 0 | 11778 | 55.4417 | C116 | C | 5 | [null] | ||
| 77 | 1 | 1 | female | 39.0 | 1 | 1 | 110413 | 79.65 | E67 | S | 8 | [null] | ||
| 78 | 1 | 1 | female | 39.0 | 1 | 1 | 17421 | 110.8833 | C68 | C | 4 | [null] | ||
| 79 | 1 | 1 | female | 55.0 | 0 | 0 | PC 17760 | 135.6333 | C32 | C | 8 | [null] | ||
| 80 | 1 | 1 | female | 31.0 | 0 | 2 | 36928 | 164.8667 | C7 | S | 8 | [null] | ||
| 81 | 2 | 0 | male | 30.0 | 1 | 0 | P/PP 3381 | 24.0 | [null] | C | [null] | [null] | ||
| 82 | 2 | 0 | male | 30.0 | 0 | 0 | 248744 | 13.0 | [null] | S | [null] | [null] | ||
| 83 | 2 | 0 | male | 57.0 | 0 | 0 | 244346 | 13.0 | [null] | S | [null] | [null] | ||
| 84 | 2 | 0 | male | 51.0 | 0 | 0 | S.O.P. 1166 | 12.525 | [null] | S | [null] | 174 | ||
| 85 | 2 | 0 | male | [null] | 0 | 0 | 239853 | 0.0 | [null] | S | [null] | [null] | ||
| 86 | 2 | 0 | male | 52.0 | 0 | 0 | 248731 | 13.5 | [null] | S | [null] | 130 | ||
| 87 | 2 | 0 | male | 37.0 | 1 | 0 | SC/AH 29037 | 26.0 | [null] | S | [null] | 17 | ||
| 88 | 2 | 0 | female | 29.0 | 1 | 0 | SC/AH 29037 | 26.0 | [null] | S | [null] | [null] | ||
| 89 | 2 | 0 | male | 29.0 | 0 | 0 | W./C. 14263 | 10.5 | [null] | S | [null] | [null] | ||
| 90 | 2 | 0 | female | 30.0 | 0 | 0 | 237249 | 13.0 | [null] | S | [null] | [null] | ||
| 91 | 2 | 0 | male | [null] | 0 | 0 | 239853 | 0.0 | [null] | S | [null] | [null] | ||
| 92 | 2 | 0 | male | 17.0 | 0 | 0 | S.O.C. 14879 | 73.5 | [null] | S | [null] | [null] | ||
| 93 | 2 | 0 | male | 18.0 | 0 | 0 | C.A. 15185 | 10.5 | [null] | S | [null] | [null] | ||
| 94 | 2 | 0 | male | 24.0 | 0 | 0 | 248726 | 13.5 | [null] | S | [null] | 297 | ||
| 95 | 2 | 0 | male | 30.0 | 0 | 0 | 250646 | 13.0 | [null] | S | [null] | 305 | ||
| 96 | 2 | 0 | male | 52.0 | 0 | 0 | 250647 | 13.0 | [null] | S | [null] | 19 | ||
| 97 | 2 | 0 | female | 18.0 | 1 | 1 | 250650 | 13.0 | [null] | S | [null] | [null] | ||
| 98 | 2 | 0 | male | 23.0 | 2 | 1 | 29104 | 11.5 | [null] | S | [null] | [null] | ||
| 99 | 2 | 0 | male | 36.0 | 0 | 0 | 242963 | 13.0 | [null] | S | [null] | [null] | ||
| 100 | 2 | 0 | male | 44.0 | 1 | 0 | 26707 | 26.0 | [null] | S | [null] | [null] |
Rows: 1-100 | Columns: 14
In [15]:
titanic["fare"].dtype()
Out[15]:
'numeric(10,5)'
In [16]:
titanic["fare"].astype(int)
Out[16]:
123 pclassInt | 123 survivedInt | Abc Varchar(164) | Abc sexVarchar(20) | 123 ageNumeric(6,3) | 123 sibspInt | 123 parchInt | Abc ticketVarchar(36) | 123 fareInteger | Abc cabinVarchar(30) | Abc embarkedVarchar(20) | Abc boatVarchar(100) | 123 bodyInt | Abc Varchar(100) | |
| 1 | 1 | 0 | male | 47.0 | 1 | 0 | PC 17757 | 228 | C62 C64 | C | [null] | 124 | ||
| 2 | 1 | 0 | male | [null] | 0 | 0 | PC 17318 | 26 | [null] | S | [null] | [null] | ||
| 3 | 1 | 0 | male | 24.0 | 0 | 1 | PC 17558 | 248 | B58 B60 | C | [null] | [null] | ||
| 4 | 1 | 0 | male | 25.0 | 0 | 0 | 13905 | 26 | [null] | C | [null] | 148 | ||
| 5 | 1 | 0 | male | 42.0 | 0 | 0 | 110489 | 27 | D22 | S | [null] | [null] | ||
| 6 | 1 | 0 | male | 45.0 | 0 | 0 | 113050 | 27 | B38 | S | [null] | [null] | ||
| 7 | 1 | 0 | male | 46.0 | 1 | 0 | W.E.P. 5734 | 61 | E31 | S | [null] | [null] | ||
| 8 | 1 | 0 | male | [null] | 0 | 0 | 113791 | 27 | [null] | S | [null] | [null] | ||
| 9 | 1 | 0 | male | 39.0 | 0 | 0 | PC 17580 | 30 | A18 | C | [null] | 133 | ||
| 10 | 1 | 0 | male | 64.0 | 1 | 4 | 19950 | 263 | C23 C25 C27 | S | [null] | [null] | ||
| 11 | 1 | 0 | male | [null] | 0 | 0 | 113778 | 27 | D34 | S | [null] | [null] | ||
| 12 | 1 | 0 | male | 71.0 | 0 | 0 | PC 17754 | 35 | A5 | C | [null] | [null] | ||
| 13 | 1 | 0 | male | [null] | 0 | 0 | 113796 | 42 | [null] | S | [null] | [null] | ||
| 14 | 1 | 0 | male | 32.5 | 0 | 0 | 113503 | 212 | C132 | C | [null] | 45 | ||
| 15 | 1 | 0 | male | 41.0 | 1 | 0 | 17464 | 52 | D21 | S | [null] | [null] | ||
| 16 | 1 | 0 | male | [null] | 0 | 0 | 113028 | 27 | C124 | S | [null] | [null] | ||
| 17 | 1 | 0 | male | 28.0 | 1 | 0 | PC 17604 | 82 | [null] | C | [null] | [null] | ||
| 18 | 1 | 0 | male | 55.0 | 0 | 0 | 113787 | 31 | C30 | S | [null] | [null] | ||
| 19 | 1 | 0 | male | 37.0 | 0 | 1 | PC 17596 | 30 | C118 | C | [null] | [null] | ||
| 20 | 1 | 0 | male | 64.0 | 0 | 0 | 693 | 26 | [null] | S | [null] | 263 | ||
| 21 | 1 | 0 | male | 28.5 | 0 | 0 | PC 17562 | 28 | D43 | C | [null] | 189 | ||
| 22 | 1 | 0 | male | [null] | 0 | 0 | PC 17757 | 228 | [null] | C | [null] | [null] | ||
| 23 | 1 | 0 | male | 56.0 | 0 | 0 | 113792 | 27 | [null] | S | [null] | [null] | ||
| 24 | 1 | 0 | male | 24.0 | 1 | 0 | 13695 | 60 | C31 | S | [null] | [null] | ||
| 25 | 1 | 0 | male | 49.0 | 1 | 1 | 17421 | 111 | C68 | C | [null] | [null] | ||
| 26 | 1 | 0 | male | 47.0 | 0 | 0 | 36967 | 34 | D46 | S | [null] | [null] | ||
| 27 | 1 | 0 | male | 64.0 | 1 | 0 | 110813 | 75 | D37 | C | [null] | [null] | ||
| 28 | 1 | 1 | male | 0.92 | 1 | 2 | 113781 | 152 | C22 C26 | S | 11 | [null] | ||
| 29 | 1 | 1 | female | 53.0 | 2 | 0 | 11769 | 51 | C101 | S | D | [null] | ||
| 30 | 1 | 1 | female | 18.0 | 1 | 0 | PC 17757 | 228 | C62 C64 | C | 4 | [null] | ||
| 31 | 1 | 1 | male | 80.0 | 0 | 0 | 27042 | 30 | A23 | S | B | [null] | ||
| 32 | 1 | 1 | male | 37.0 | 1 | 1 | 11751 | 53 | D35 | S | 5 | [null] | ||
| 33 | 1 | 1 | male | 26.0 | 0 | 0 | 111369 | 30 | C148 | C | 5 | [null] | ||
| 34 | 1 | 1 | female | 42.0 | 0 | 0 | PC 17757 | 228 | [null] | C | 4 | [null] | ||
| 35 | 1 | 1 | male | 25.0 | 1 | 0 | 11967 | 91 | B49 | C | 7 | [null] | ||
| 36 | 1 | 1 | female | 35.0 | 0 | 0 | PC 17760 | 136 | C99 | S | 8 | [null] | ||
| 37 | 1 | 1 | female | 45.0 | 0 | 0 | PC 17608 | 262 | [null] | C | 4 | [null] | ||
| 38 | 1 | 1 | female | 22.0 | 0 | 1 | 113505 | 55 | E33 | S | 6 | [null] | ||
| 39 | 1 | 1 | female | 60.0 | 0 | 0 | 11813 | 76 | D15 | C | 8 | [null] | ||
| 40 | 1 | 1 | female | 14.0 | 1 | 2 | 113760 | 120 | B96 B98 | S | 4 | [null] | ||
| 41 | 1 | 1 | female | [null] | 0 | 0 | 17770 | 28 | [null] | C | 5 | [null] | ||
| 42 | 1 | 1 | male | 45.0 | 0 | 0 | PC 17594 | 30 | A9 | C | 7 | [null] | ||
| 43 | 1 | 1 | female | 22.0 | 0 | 0 | 113781 | 152 | [null] | S | 11 | [null] | ||
| 44 | 1 | 1 | female | 64.0 | 0 | 2 | PC 17756 | 83 | E45 | C | 14 | [null] | ||
| 45 | 1 | 1 | female | 36.0 | 0 | 2 | WE/P 5735 | 71 | B22 | S | 7 | [null] | ||
| 46 | 1 | 1 | female | 27.0 | 1 | 1 | PC 17558 | 248 | B58 B60 | C | 6 | [null] | ||
| 47 | 1 | 1 | female | 54.0 | 1 | 0 | 36947 | 78 | D20 | C | 4 | [null] | ||
| 48 | 1 | 1 | male | 43.0 | 1 | 0 | 17765 | 28 | D40 | C | 5 | [null] | ||
| 49 | 1 | 1 | female | 22.0 | 0 | 2 | 13568 | 50 | B39 | C | 5 | [null] | ||
| 50 | 1 | 1 | female | 35.0 | 1 | 0 | 113803 | 53 | C123 | S | D | [null] | ||
| 51 | 1 | 1 | male | 53.0 | 0 | 0 | 113780 | 29 | C51 | C | B | [null] | ||
| 52 | 1 | 1 | female | 19.0 | 0 | 0 | 112053 | 30 | B42 | S | 3 | [null] | ||
| 53 | 1 | 1 | female | 58.0 | 0 | 1 | PC 17582 | 153 | C125 | S | 3 | [null] | ||
| 54 | 1 | 1 | male | 23.0 | 0 | 1 | PC 17759 | 63 | D10 D12 | C | 7 | [null] | ||
| 55 | 1 | 1 | male | 25.0 | 1 | 0 | 11765 | 55 | E50 | C | 5 | [null] | ||
| 56 | 1 | 1 | male | [null] | 0 | 0 | 16988 | 30 | D45 | S | 3 | [null] | ||
| 57 | 1 | 1 | female | 35.0 | 1 | 0 | 113789 | 52 | [null] | S | 8 | [null] | ||
| 58 | 1 | 1 | female | [null] | 1 | 0 | 17464 | 52 | D21 | S | 8 | [null] | ||
| 59 | 1 | 1 | male | 42.0 | 1 | 0 | 11753 | 53 | D19 | S | 5 | [null] | ||
| 60 | 1 | 1 | female | 45.0 | 1 | 0 | 11753 | 53 | D19 | S | 5 | [null] | ||
| 61 | 1 | 1 | female | 39.0 | 0 | 0 | 24160 | 211 | [null] | S | 2 | [null] | ||
| 62 | 1 | 1 | female | 16.0 | 0 | 1 | PC 17592 | 39 | D28 | S | 9 | [null] | ||
| 63 | 1 | 1 | female | 21.0 | 0 | 0 | 13502 | 78 | D9 | S | 10 | [null] | ||
| 64 | 1 | 1 | female | 18.0 | 1 | 0 | 113773 | 53 | D30 | S | 10 | [null] | ||
| 65 | 1 | 1 | male | 36.0 | 0 | 0 | PC 17473 | 26 | E25 | S | 7 | [null] | ||
| 66 | 1 | 1 | female | 37.0 | 1 | 0 | 19928 | 90 | C78 | Q | 14 | [null] | ||
| 67 | 1 | 1 | male | [null] | 0 | 0 | F.C. 12998 | 26 | [null] | C | 7 | [null] | ||
| 68 | 1 | 1 | female | 22.0 | 1 | 0 | 113776 | 67 | C2 | S | 8 | [null] | ||
| 69 | 1 | 1 | female | 30.0 | 0 | 0 | 12749 | 94 | B73 | S | 3 | [null] | ||
| 70 | 1 | 1 | female | 33.0 | 0 | 0 | PC 17613 | 28 | A11 | C | 11 | [null] | ||
| 71 | 1 | 1 | female | 54.0 | 1 | 0 | PC 17603 | 59 | [null] | C | 6 | [null] | ||
| 72 | 1 | 1 | female | 18.0 | 2 | 2 | PC 17608 | 262 | B57 B59 B63 B66 | C | 4 | [null] | ||
| 73 | 1 | 1 | female | 48.0 | 1 | 3 | PC 17608 | 262 | B57 B59 B63 B66 | C | 4 | [null] | ||
| 74 | 1 | 1 | male | 35.0 | 0 | 0 | PC 17475 | 26 | E24 | S | 5 | [null] | ||
| 75 | 1 | 1 | female | 23.0 | 1 | 0 | 21228 | 82 | B45 | S | 7 | [null] | ||
| 76 | 1 | 1 | female | 43.0 | 1 | 0 | 11778 | 55 | C116 | C | 5 | [null] | ||
| 77 | 1 | 1 | female | 39.0 | 1 | 1 | 110413 | 80 | E67 | S | 8 | [null] | ||
| 78 | 1 | 1 | female | 39.0 | 1 | 1 | 17421 | 111 | C68 | C | 4 | [null] | ||
| 79 | 1 | 1 | female | 55.0 | 0 | 0 | PC 17760 | 136 | C32 | C | 8 | [null] | ||
| 80 | 1 | 1 | female | 31.0 | 0 | 2 | 36928 | 165 | C7 | S | 8 | [null] | ||
| 81 | 2 | 0 | male | 30.0 | 1 | 0 | P/PP 3381 | 24 | [null] | C | [null] | [null] | ||
| 82 | 2 | 0 | male | 30.0 | 0 | 0 | 248744 | 13 | [null] | S | [null] | [null] | ||
| 83 | 2 | 0 | male | 57.0 | 0 | 0 | 244346 | 13 | [null] | S | [null] | [null] | ||
| 84 | 2 | 0 | male | 51.0 | 0 | 0 | S.O.P. 1166 | 13 | [null] | S | [null] | 174 | ||
| 85 | 2 | 0 | male | [null] | 0 | 0 | 239853 | 0 | [null] | S | [null] | [null] | ||
| 86 | 2 | 0 | male | 52.0 | 0 | 0 | 248731 | 14 | [null] | S | [null] | 130 | ||
| 87 | 2 | 0 | male | 37.0 | 1 | 0 | SC/AH 29037 | 26 | [null] | S | [null] | 17 | ||
| 88 | 2 | 0 | female | 29.0 | 1 | 0 | SC/AH 29037 | 26 | [null] | S | [null] | [null] | ||
| 89 | 2 | 0 | male | 29.0 | 0 | 0 | W./C. 14263 | 11 | [null] | S | [null] | [null] | ||
| 90 | 2 | 0 | female | 30.0 | 0 | 0 | 237249 | 13 | [null] | S | [null] | [null] | ||
| 91 | 2 | 0 | male | [null] | 0 | 0 | 239853 | 0 | [null] | S | [null] | [null] | ||
| 92 | 2 | 0 | male | 17.0 | 0 | 0 | S.O.C. 14879 | 74 | [null] | S | [null] | [null] | ||
| 93 | 2 | 0 | male | 18.0 | 0 | 0 | C.A. 15185 | 11 | [null] | S | [null] | [null] | ||
| 94 | 2 | 0 | male | 24.0 | 0 | 0 | 248726 | 14 | [null] | S | [null] | 297 | ||
| 95 | 2 | 0 | male | 30.0 | 0 | 0 | 250646 | 13 | [null] | S | [null] | 305 | ||
| 96 | 2 | 0 | male | 52.0 | 0 | 0 | 250647 | 13 | [null] | S | [null] | 19 | ||
| 97 | 2 | 0 | female | 18.0 | 1 | 1 | 250650 | 13 | [null] | S | [null] | [null] | ||
| 98 | 2 | 0 | male | 23.0 | 2 | 1 | 29104 | 12 | [null] | S | [null] | [null] | ||
| 99 | 2 | 0 | male | 36.0 | 0 | 0 | 242963 | 13 | [null] | S | [null] | [null] | ||
| 100 | 2 | 0 | male | 44.0 | 1 | 0 | 26707 | 26 | [null] | S | [null] | [null] |
Rows: 1-100 | Columns: 14
In [17]:
titanic["fare"].dtype()
Out[17]:
'integer'
In [18]:
from verticapy.utilities import tablesample
# str -> array
dataset = tablesample({"artists": ["Inna, Alexandra, Reea", "Rihanna, Beyonce"]}).to_vdf()
dataset["artists"].astype("array")
Out[18]:
🛠 artistsArray | |
| 1 | b'["Inna","Alexandra","Reea"]' |
| 2 | b'["Rihanna","Beyonce"]' |
Rows: 1-2 | Column: artists | Type: array
In [19]:
# array -> json
dataset["artists"].astype("json")
Out[19]:
Abc artistsVarchar | |
| 1 | ["Inna","Alexandra","Reea"] |
| 2 | ["Rihanna","Beyonce"] |
Rows: 1-2 | Column: artists | Type: varchar
(c) Copyright [2020-2023] OpenText
