
Why All Column Stores
Are Not the Same
 Twelve Low-Level Features That Offer
High Value to Analysts

White Paper
Analytics & Big Data

pageTable of Contents
Compression . . 1

Early and Late Materialization. . 1

Predicate Pushdown. . 2

Projections and Live Aggregate Projections. . 2

Flattened Tables . . 3

Compressing the Indexes is Not Columnar. . 3

Architectural Issues—Leader Nodes. 4

Memory vs Disk Drive. . 4

Memory Management. . 5

Columnar Core. . 5

Depth of Analysis. . 6

Openness and Lock-in . . 7

Final Thoughts. . 7

Vertica 8

www.vertica.com

There is a common fallacy that columnar store databases are becoming commoditized and that
many vendors are filling in the checkbox for column database. While true that there are quite a few
databases who started out as a row store and now can reportedly store data in columns, many lack
some of the critical capabilities needed for optimal performance. Using a row store engine to store data
in columns is quite different from having a native column-store.

In this white paper, we’ll discuss twelve critical capabilities for a column store database. From compression
techniques to optimization strategies, the detail on how your columnar database works and how the inner
workings impact usage are crucial for project success.

Compression

One of the huge advantages of storing a column of data is in the efficiency of compression. If you have
a lot of repeated values in a column, say stock names or items that have been selected from a
drop-down menu, RLE and LZH compression will be quite efficient in compressing the data.
Numbers in a column are a different matter. Vertica uses integer packing for integers, for
example. When you compress efficiently, based on the data that is stored in the column, it reduces
the time to push the data through the slowest part of your computer, namely your I/O bus.

In both native columnar databases and pseudo-columnar databases, you probably have some form of
compression, but the intelligence behind the compression and the variety of compression
algorithms is a key difference. There are nine types of encoding/compression listed in the latest
Vertica documentation, each geared toward efficiency for common data types, or you can select the
first option, Auto.

When you look across solutions in the column store market, most have fewer algorithms and therefore
store data less effectively than possible. For example, Hadoop solutions primarily use Snappy, and
Zlib compression for ORC and Parquet data. As data volumes grow, the difference in the number of
nodes you need to run your analytics is significant because of the differences in columnar compression.

Early and Late Materialization

Early and Late Materialization for a column store describes when you have to decompress data. This has a
huge impact on performance. Depending on the query, you mostly want to keep the data compressed
and act on compressed data as much as possible, because buffering and acting on compressed data
is more efficient. Typically, the pseudo-columnar solutions rely on early stage materialization, so
that once you reference the compressed column, it decompresses it to perform the query. The
late stage materialization of a true column store1 lets you act on compressed

Understand how much
space is saved when
compressing data, leading to
more data on fewer servers
and deployment savings.

Determine how the solution
accesses and loads data
during the query with
performance in mind.

http://www.vertica.com
https://my.vertica.com/docs/9.0.x/HTML/index.htm#Authoring/SQLReferenceManual/Statements/encoding-type.htm

White Paper
Why All Column Stores Are Not the Same

2

data and only decompresses for presentation. Late stage materialization is common on some row stores
that later added column capability.

When you materialize data has a big impact on performance. You can imagine that if you
materialize too much data, too soon, it will become a burden on memory management, network
traffic, concurrency and more. When choosing a columnar database, make sure that materialization is
very efficient.

Predicate Pushdown

The database’s capability for predicate pushdown can have a big impact on performance and is linked to
materialization. If I ask SQL to give me a list of customers where the last name begins with “B”, the
predi-cate should be considered in the query plan, otherwise the system will spend a lot of time and
resources pulling up last names that don’t start with B. It should be able to optimize and know that
the customer whose last name begins with B exist mostly in one or two nodes and therefore it’s
unnecessary to pull out the full list into memory and eliminate the ones that don’t meet this
condition.

When your solution lacks predicate push-down, you'll experience poor performance similar to early
materialization. Memory management, network performance and concurrency issues will occur causing
queries to fail or run slowly. You’ll see a lack of predicate pushdown most often in the Hadoop world,
although they are adding this in many solutions. The Vertica manual describes predicate pushdown
and Hadoop file formats here.

Projections and Live Aggregate Projections

What happens if I load my data into my column store and it still doesn’t meet my service level agreement
with my business stakeholders? It’s still not fast enough. Do I have any place to go? Because compression,
predicate pushdown, and late stage materialization are so efficient in Vertica, you may want to
keep accessible copies of some of your data so that it can be pre-optimized for different types of
common queries. In the RDBMS world, materialized views are similar to projections.

For projections, the initial database might be a list of customers as they join the customer list, while a
copy might be sorted by last name or region. Then, when you ask for a report by region, the
predicate push-down and materialization features kick in and get right to the data you need. If
your reports rely on a customer count, you shouldn’t have to always ask the database to count it all
repeatedly. Instead, you use aggregate projections to keep a running tally. If you want to know the top 10
customer deals this quarter, you should be able to keep a running tally without have to look through the
entire database. This is why projections and live aggregate projections are so important in a columnar
database.

Understand how more
complex queries are
processed in order
to determine the
database’s efficiency.

Understand how
optimizations can boost
query performance and
the level of management
needed to keep them
up to date.

https://my.vertica.com/docs/9.0.x/HTML/index.htm#Authoring/HadoopIntegrationGuide/NativeFormats/QueryPerformance.htm?Highlight=predicate
perrowm
Cross-Out
you should

perrowm
Inserted Text

3www.vertica.com

With other solutions in the market, it’s possible to create a copy of the data and manually manage
these views as data stores. However, since many of these solutions don’t have these optimizations,
you’re going to have to code it and manage the data copies much more carefully.

Flattened Tables

So what about optimizing JOINs in a columnar database? What optimizations exist for a
columnar store to do JOINs? Normalized database design often uses a star or snowflake schema
model, comprising mul-tiple large fact tables and many smaller dimension tables. Queries typically
involve joins between a large fact table and multiple dimension tables. These queries can incur
significant overhead, especially as the analytical needs of the organization change but the database
design remains the same.

Moreover, it’s common for database schemas to require changes. Ask yourself a simple question
—are you running the same reports this year as you were just one year ago? What about
two years ago? Schemas are designed to be optimized for some form of reporting, but the
data changes, the needs of analysts change and your business changes. When this happens, you
can choose to refactor your database, or you can use a feature like flattened tables.

Vertica flattened tables are denormalized tables that that get their values by querying other tables. To
the analyst, it appears that all of the columns needed are in one table. What is actually happening
is that Vertica can create a copy of the data in a flattened schema and still be very efficient in storage
require-ment. Again, using the efficiencies of compression, late stage materialization and predicate
push-down, these normalized tables have two interesting benefits: 1) It makes it easier for the business
analyst to write simple queries instead of JOINs, and; 2) performance is faster than a normalize JOIN in
many cases.

Compressing the Indexes is Not Columnar

In standard relational databases, indexes are used to quickly locate the data you need for the query. Of
course, you have to spend resources keeping them up to date as newVertica is the most advanced
analytics data warehouse based on a massively scalable architecture data comes in. This is another reason
why columnar databases are so much more efficient than row store database.

In a columnar database, there should be no indexes because you know exactly where the data is
stored for the columns, plus you have predicate pushdown so that subsets of columns are also easily
located. If you need to optimize further, you can turn to projections and flattened tables. That’s why it’s
puzzling to see that indexes are still referenced in certain columnar solutions.

Compare the method used
for boosting JOINs and how
the solution can simplify
JOIN queries.

Understand exactly what
data is compressed its
impact on performance.

http://www.vertica.com

http://www.vertica.com
https://www.vertica.com/resource/benchmarks-prove-you-need-an-analytical-database-for-big-data/

http://www.vertica.com/machinelearning

http://www.vertica.com

White Paper
Why All Column Stores Are Not the Same

8

In most cases, Vertica is less
expensive to license than
legacy database solutions
and is a natural fit when
updating those systems.

Vertica

Vertica provides a powerful analytics platform based on columnar storage. At its base, Vertica is a SQL
database that was purpose-built for advanced analytics against big data. It leverages revolutionary mas-
sively parallel, columnar storage optimizations to deliver high performance with very complex analytic
queries against multi-terabyte datasets.

While SQL is the primary query and analysis language, Vertica also supports Java, Python, R, and C. The
analytical functions are vast and include time-series, data preparation, geospatial and other advanced
functions. What’s more, Vertica can perform in-database machine learning like linear regression, logistic
regression, SVM, K-means, Naïve-Bayes and more to deliver predictive analytics. You can stop copying
data out of your data warehouse when you want to do predictive analytics. Vertica leverages the MPP
cluster and optimizations when training and performing machine learning analytics.

In a modern enterprise architecture, gaining access to data that’s stored in multiple locations is crucial to
delivering analytics. Vertica allows you to perform analysis on data that is sitting in HDFS (Apache
Hadoop). It doesn’t really matter if the data is stored in your database or in ORC or Parquet formats,
Vertica can per-form analysis on it without having to first copy it. Furthermore, the Vertica Flex table
feature enables users to define and apply schema during query and analysis, thereby handling formats
like JSON.

In most cases, Vertica is less expensive to license than legacy database solutions and is a natural fit when
updating those systems. ETL and data visualization tools will work the same, only faster, while you save
on costs on tuning indexes and optimizing your legacy systems. When it’s time to move to cloud, you can
take your Vertica license and deploy on Amazon, Microsoft Azure or Google clouds. Simply specify one of
these locations in our management console and deploy.

Download Vertica’s free Community Edition today at: vertica.com

Learn More At
www.vertica.com

http://www.vertica.com
http://www.vertica.com

www.vertica.com

Additional contact information and office locations:
www.vertica.com

662-000011-001 | V | DS | 05/18 | © 2018, 2020 Micro Focus®. All rights reserved. Micro Focus and the Micro Focus logo, among others, are trademarks or
registered trademarks of Micro Focus or its subsidiaries or affiliated companies in the United Kingdom, United States and other countries. All other marks are the
property of their respective owners.

http://www.vertica.com
http://www.vertica.com

