
Why All Column Stores
Are Not the Same
 Twelve Low-Level Features That Offer
High Value to Analysts

White Paper
Analytics & Big Data

pageTable of Contents
Compression . 1

Early and Late Materialization . 1

Predicate Pushdown . 2

Projections and Live Aggregate Projections . 2

Flattened Tables . 3

Compressing the Indexes is Not Columnar . 3

Architectural Issues—Leader Nodes . 4

Memory vs Disk Drive . 4

Memory Management . 5

Columnar Core . 5

Depth of Analysis . 6

Openness and Lock-in . 7

Final Thoughts . 7

Vertica . 8

www .vertica .com

There is a common fallacy that columnar store databases are becoming commoditized and that
many vendors are filling in the checkbox for column database. While true that there are quite a few
databases who started out as a row store and now can reportedly store data in columns, many lack
some of the critical capabilities needed for optimal performance. Using a row store engine to store data
in columns is quite different from having a native column-store.

In this white paper, we’ll discuss twelve critical capabilities for a column store database. From compression
techniques to optimization strategies, the detail on how your columnar database works and how the inner
workings impact usage are crucial for project success.

Compression

One of the huge advantages of storing a column of data is in the efficiency of compression. If you have
a lot of repeated values in a column, say stock names or items that have been selected from a
drop-down menu, RLE and LZH compression will be quite efficient in compressing the data.
Numbers in a column are a different matter. Vertica uses integer packing for integers, for
example. When you compress efficiently, based on the data that is stored in the column, it reduces
the time to push the data through the slowest part of your computer, namely your I/O bus.

In both native columnar databases and pseudo-columnar databases, you probably have some form of
compression, but the intelligence behind the compression and the variety of compression
algorithms is a key difference. There are nine types of encoding/compression listed in the latest
Vertica documentation, each geared toward efficiency for common data types, or you can select the
first option, Auto.

When you look across solutions in the column store market, most have fewer algorithms and therefore
store data less effectively than possible. For example, Hadoop solutions primarily use Snappy, and
Zlib compression for ORC and Parquet data. As data volumes grow, the difference in the number of
nodes you need to run your analytics is significant because of the differences in columnar compression.

Early and Late Materialization

Early and Late Materialization for a column store describes when you have to decompress data. This has a
huge impact on performance. Depending on the query, you mostly want to keep the data compressed
and act on compressed data as much as possible, because buffering and acting on compressed data
is more efficient. Typically, the pseudo-columnar solutions rely on early stage materialization, so
that once you reference the compressed column, it decompresses it to perform the query. The
late stage materialization of a true column store1 lets you act on compressed

Understand how much
space is saved when
compressing data, leading to
more data on fewer servers
and deployment savings .

Determine how the solution
accesses and loads data
during the query with
performance in mind .

http://www.vertica.com
https://my.vertica.com/docs/9.0.x/HTML/index.htm#Authoring/SQLReferenceManual/Statements/encoding-type.htm

White Paper
Why All Column Stores Are Not the Same

2

data and only decompresses for presentation. Late stage materialization is common on some row stores
that later added column capability.

When you materialize data has a big impact on performance. You can imagine that if you
materialize too much data, too soon, it will become a burden on memory management, network
traffic, concurrency and more. When choosing a columnar database, make sure that materialization is
very efficient.

Predicate Pushdown

The database’s capability for predicate pushdown can have a big impact on performance and is linked to
materialization. If I ask SQL to give me a list of customers where the last name begins with “B”, the
predi-cate should be considered in the query plan, otherwise the system will spend a lot of time and
resources pulling up last names that don’t start with B. It should be able to optimize and know that
the customer whose last name begins with B exist mostly in one or two nodes and therefore it’s
unnecessary to pull out the full list into memory and eliminate the ones that don’t meet this
condition.

When your solution lacks predicate push-down, you'll experience poor performance similar to early
materialization. Memory management, network performance and concurrency issues will occur causing
queries to fail or run slowly. You’ll see a lack of predicate pushdown most often in the Hadoop world,
although they are adding this in many solutions. The Vertica manual describes predicate pushdown
and Hadoop file formats here.

Projections and Live Aggregate Projections

What happens if I load my data into my column store and it still doesn’t meet my service level agreement
with my business stakeholders? It’s still not fast enough. Do I have any place to go? Because compression,
predicate pushdown, and late stage materialization are so efficient in Vertica, you may want to
keep accessible copies of some of your data so that it can be pre-optimized for different types of
common queries. In the RDBMS world, materialized views are similar to projections.

For projections, the initial database might be a list of customers as they join the customer list, while a
copy might be sorted by last name or region. Then, when you ask for a report by region, the
predicate push-down and materialization features kick in and get right to the data you need. If
your reports rely on a customer count, you shouldn’t have to always ask the database to count it all
repeatedly. Instead, you use aggregate projections to keep a running tally. If you want to know the top 10
customer deals this quarter, you should be able to keep a running tally without have to look through the
entire database. This is why projections and live aggregate projections are so important in a columnar
database.

Understand how more
complex queries are
processed in order
to determine the
database’s efficiency.

Understand how
optimizations can boost
query performance and
the level of management
needed to keep them
up to date .

https://my.vertica.com/docs/9.0.x/HTML/index.htm#Authoring/HadoopIntegrationGuide/NativeFormats/QueryPerformance.htm?Highlight=predicate
perrowm
Cross-Out
you should

perrowm
Inserted Text

3www .vertica .com

With other solutions in the market, it’s possible to create a copy of the data and manually manage
these views as data stores. However, since many of these solutions don’t have these optimizations,
you’re going to have to code it and manage the data copies much more carefully.

Flattened Tables

So what about optimizing JOINs in a columnar database? What optimizations exist for a
columnar store to do JOINs? Normalized database design often uses a star or snowflake schema
model, comprising mul-tiple large fact tables and many smaller dimension tables. Queries typically
involve joins between a large fact table and multiple dimension tables. These queries can incur
significant overhead, especially as the analytical needs of the organization change but the database
design remains the same.

Moreover, it’s common for database schemas to require changes. Ask yourself a simple question
—are you running the same reports this year as you were just one year ago? What about
two years ago? Schemas are designed to be optimized for some form of reporting, but the
data changes, the needs of analysts change and your business changes. When this happens, you
can choose to refactor your database, or you can use a feature like flattened tables.

Vertica flattened tables are denormalized tables that that get their values by querying other tables. To
the analyst, it appears that all of the columns needed are in one table. What is actually happening
is that Vertica can create a copy of the data in a flattened schema and still be very efficient in storage
require-ment. Again, using the efficiencies of compression, late stage materialization and predicate
push-down, these normalized tables have two interesting benefits: 1) It makes it easier for the business
analyst to write simple queries instead of JOINs, and; 2) performance is faster than a normalize JOIN in
many cases.

Compressing the Indexes is Not Columnar

In standard relational databases, indexes are used to quickly locate the data you need for the query. Of
course, you have to spend resources keeping them up to date as newVertica is the most advanced
analytics data warehouse based on a massively scalable architecture data comes in. This is another reason
why columnar databases are so much more efficient than row store database.

In a columnar database, there should be no indexes because you know exactly where the data is
stored for the columns, plus you have predicate pushdown so that subsets of columns are also easily
located. If you need to optimize further, you can turn to projections and flattened tables. That’s why it’s
puzzling to see that indexes are still referenced in certain columnar solutions.

Compare the method used
for boosting JOINs and how
the solution can simplify
JOIN queries.

Understand exactly what
data is compressed its
impact on performance .

http://www.vertica.com

White Paper
Why All Column Stores Are Not the Same

4

Understand if your
solution has a single point
of failure and weigh the
risk of downtime .

Upon further investigation, you may find that some vendors are compressing indexes and calling it co-
lumnar. You may find some solutions that can archive data in columnar format, but since the engine is still
a row-store engine, you need to index the data. Any columnar database that makes you deal with indexes
should be carefully examined.

Architectural Issues—Leader Nodes

Surprisingly, many newer columnar data stores have a major architectural flaw. Certain products have a
single point of failure where queries go into “master servers” to create a query plan and dispatch the
query to multiple nodes. Although this node is capable of fail-over, it is a trouble spot if that single node
goes down.

Don’t bet your money on any columnar database with a single point of failure. For a well-architected system,
you should be able to query any node. Any node should act as the controller and handle distributing the
work across the cluster.

Memory vs Disk Drive

It’s well known that RAM memory is fairly efficient in transferring data when compared to hard disk drive.
If you could get all of the data you need to analyze into memory, the query should run fast. Some
columnar databases are big on this principle. They are primarily in-memory databases and recognize that
you store the data in columns rather than rows, you can compress with greater efficiency and get more
data into RAM. In-memory databases are mostly columnar for this reason.

However, databases like this take a huge performance hit when they run out of in-memory storage and
analysis spills over to disk. In our testing with products like Spark, queries are fast until you hit this limit. If
you want to test this limitation, you have to test your in-memory database with a LOT of data, more data
than you have memory, and see how it performs.

A better architecture uses the memory available and optimizes disk access as much as possible.
Instead of assuming in-memory, very fast disk access and the best utilization of
memory available to cache data. Vertica allows the database to limit the data it has to access from
disk with compression, predicate pushdown and late materialization.

Leverage lower cost
commodity servers rather
than high-end memory-
heavy ones and improve
your total cost of ownership .

Vertica is designed for

5www .vertica .com

Memory Management

One of the most difficult tasks to do is to manage memory for more complex SQL queries. The TPC-DS
benchmark queries contain some good examples of analysis that might take a lot of memory, often
referred to as “long running queries”. Newer column stores simply don’t have the maturity to manage
memory properly during a long running query. This is what happens when your query runs for 15 hours
then fails. Memory management is immature in your solution.

In our benchmarks, immature solutions have a particularly hard time with long-running queries when you
have concurrent queries. So, if you send your solution 5 quick queries, 2 medium queries and 1 long
query, is it mature enough to manage memory during the test? Can you tell your solution that some of
the quick and medium queries are important and we need them fast, while the rest of the queries can
take their time? Our benchmarks show that not every solution has mature mixed workload management.
Some of the solutions on the market and in the open source community can’t finish all the queries when
sent simultaneously.

The key to a mature analytics platform is having a mature workload management system. Vertica’s re-
source management capability allows diverse, concurrent workloads to run efficiently on the database.
For basic operations, Vertica pre-configures the built-in general pool based on RAM and machine cores.
You can customize the General pool to handle specific concurrency requirements. You can also define
new resource pools that you configure to limit memory usage, concurrency, and query priority. You can
then optionally assign each database user to a specific resource pool, which controls memory resources
used by their requests.

In the open source world, you can accomplish this, but you need some combination of Hive, Tez, Solr or
Spark combined with Ambari or Zookeeper for operational control and perhaps Yarn for data management.
If you want that to be secure, you should bring in Ranger or Apache Sentry. Or you can just do it all in
Vertica.

Columnar Core

It’s somewhat common to see row store engines used for column store purposes. Keep in mind that adding
column store to a row store engine is not a simple task. There will be efficiencies in building a database to
be columnar from the ground up, as we’ve done with Vertica.

There are also row stores that have later added some columnar capabilities. Solutions from Teradata,
Greenplum, Oracle Exadata and others fall into this category. In the case of Oracle, column store is used
for archiving and backup so that older, colder data fits tightly in a server. In Oracle Exadata, columnar com-
pression is an effective way to archive data for later retrieval, but the hot data still remains in a row store.

Make sure you can run
concurrent queries without
fail, while also being able
to set relative importance .
In doing so, give better
access to more analytics
for all .

Understand if the database
was developed as columnar
from the beginning, or as
an afterthought .

http://www.vertica.com
https://www.vertica.com/resource/benchmarks-prove-you-need-an-analytical-database-for-big-data/

White Paper
Why All Column Stores Are Not the Same

6

Determine the depth of
analytical functions so
that you can run all the
analysis you need without
heavy coding .

Oracle provides a solution called Oracle’s Hybrid Columnar Compression, which primarily uses columnar
storage and compression for a hot backup. Teradata and Greenplum take the data you’ve selected as part of
a query and decompressed into rows and then processes the query using their conventional oriented
database engines. There’s some speed improvement possible in this, but it’s primarily early stage materi-
alization without predicate push-down.

There are highly scalable databases that are sometimes confused with column stores but have none of the
columnar capabilities for extreme speed and storage. Netezza was a great example of this type of database
because it was MPP, but not a true native column store. Therefore, you’ll notice that many of the features
of a column store database like predicate push-down and materialization don’t apply.

Depth of Analysis

Speed and query performance aren’t the only measure of a modern database. Many of the new solutions
on the market focus on the speed and performance of columnar, but lack the in-depth analytics offered by
Vertica. Some solutions won’t complete the ANSI SQL benchmarks like TPC-DS. Functions like geo-spatial
and time-series analysis might be important to your analytics. If so, some offerings require that you
wrangle additional solutions and that you move the data back and forth between them. Others may
require extensive coding in Scala, Java, or Python in order to accomplish the task.

A great example of this is time series data. If an IoT device is sending you information consistently, then
for whatever reason stops, this can become problematic for your analytics. Without functions for time
series analysis, you would have to curate the data to fill in missing values for fear of inaccurate analytics.
Functions like gap analysis and missing value imputation can speed the process greatly.

It's best to assess what type of analysis you want to perform and check to make sure that the database
supports it. Since some databases are immature, they may lack the capability and open your team up for
extra grunt work down the road.

Vertica provides many advanced SQL-based functions from graph analysis to triangle counting to Monte
Carlo simulations to geospatial and more. Vertica’s in-database machine learning capabilities allow users
to take advantage of Big Data while simplifying and speeding up their predictive analytics processes to
make better informed decisions, compete more effectively, and accelerate time-to-insight. From data prep
to deployment, Vertica supports the entire machine learning process, and allows models to be deployed
across Vertica clusters, a key requirement for solutions that embed Vertica as their analytics engine.

http://www.vertica.com/machinelearning

7www .vertica .com

Openness and Lock-in

What if you want to use data that’s sitting outside the database? The file formats ORC and Parquet are
common column store formats. Can you leverage those formats without having to copy the data? Some
databases like Vertica have functions for reading external tables without having to load them in the da-
tabase. Some solutions can also apply schema on read to file formats like JSON while others require an
external tool like an ETL tool.

Analysts and database administrators don’t want to be locked-in to one cloud, or one solution. More
than that, they want to be able to analyze data that’s already stored in columnar format as it sits. If
data becomes less critical, they may want to tier it off to a more cost effective storage layer, thus
supporting information lifecycle management.

Be wary of columnar databases in the market that lock you in to specific infrastructure. Snowflake and
Redshift are great examples of this. You’re locking yourself into the Amazon cloud with very few paths for
getting out.

Final Thoughts

If you’re evaluating database features, don’t just assume that a columnar database is a commodity.
While there are more databases than ever before that claim to be column stores,
your performance will vary greatly, based on the differences outlined above. Don’t be afraid to
ask your vendor about these features. If you work with an analyst, make sure they
understand the intricacies of a column store database before you take their recommendation for a
solution.

Selecting the right analytical database requires more than a simple “column store” check box. It’s about
identifying a mature, high performance solution that:

■ Doesn’t require expensive memory-heavy servers (or GPUs) to be performant

■ Speeds up your queries when you have lots of data or many users

■ Can handle mixed workloads and different user expectations

■ Makes it easy to extract and analyze data, even outside the database

■ Is easy to manage and is always optimized

These are the qualities of a column store analytical database that will have the greatest positive impact
on your team as they embark on their next big data project.

Understand how you’re
going to leverage external
data without having to
load it and/or migrate off
of the platform if needed .
Make sure the database
supports information
lifecycle management .

http://www.vertica.com

White Paper
Why All Column Stores Are Not the Same

8

In most cases, Vertica is less
expensive to license than
legacy database solutions
and is a natural fit when
updating those systems .

Vertica

Vertica provides a powerful analytics platform based on columnar storage. At its base, Vertica is a SQL
database that was purpose-built for advanced analytics against big data. It leverages revolutionary mas-
sively parallel, columnar storage optimizations to deliver high performance with very complex analytic
queries against multi-terabyte datasets.

While SQL is the primary query and analysis language, Vertica also supports Java, Python, R, and C. The
analytical functions are vast and include time-series, data preparation, geospatial and other advanced
functions. What’s more, Vertica can perform in-database machine learning like linear regression, logistic
regression, SVM, K-means, Naïve-Bayes and more to deliver predictive analytics. You can stop copying
data out of your data warehouse when you want to do predictive analytics. Vertica leverages the MPP
cluster and optimizations when training and performing machine learning analytics.

In a modern enterprise architecture, gaining access to data that’s stored in multiple locations is crucial to
delivering analytics. Vertica allows you to perform analysis on data that is sitting in HDFS (Apache
Hadoop). It doesn’t really matter if the data is stored in your database or in ORC or Parquet formats,
Vertica can per-form analysis on it without having to first copy it. Furthermore, the Vertica Flex table
feature enables users to define and apply schema during query and analysis, thereby handling formats
like JSON.

In most cases, Vertica is less expensive to license than legacy database solutions and is a natural fit when
updating those systems. ETL and data visualization tools will work the same, only faster, while you save
on costs on tuning indexes and optimizing your legacy systems. When it’s time to move to cloud, you can
take your Vertica license and deploy on Amazon, Microsoft Azure or Google clouds. Simply specify one of
these locations in our management console and deploy.

Download Vertica’s free Community Edition today at: vertica.com

Learn More At
www.vertica.com

http://www.vertica.com
http://www.vertica.com

www.vertica.com

Additional contact information and office locations:
www.vertica.com

662-000011-001 | V | DS | 05/18 | © 2018, 2020 Micro Focus®. All rights reserved. Micro Focus and the Micro Focus logo, among others, are trademarks or
registered trademarks of Micro Focus or its subsidiaries or affiliated companies in the United Kingdom, United States and other countries. All other marks are the
property of their respective owners.

http://www.vertica.com
http://www.vertica.com

