Deploy Machine Learning for the New Speed and Scale of Business

Built into Vertica’s core—with no need to download and install separate packages—in-database machine learning supports the entire predictive analytics process with massively parallel processing and a familiar SQL interface, allowing data scientists and analysts to embrace the power of Big Data and accelerate business outcomes without limits or compromises.
**Table of Contents**

Purpose of this White Paper ................................................................. 4

Machine Learning: A Competitive Advantage ............................................. 4

What is Machine Learning? ........................................................................ 4

Barriers to Applying Machine Learning at Scale ........................................ 5

Vertica Analytics Platform Delivers Predictive Analytics at Speed and Scale ... 6

Implementing Machine Learning with the Vertica Analytics Platform ........ 6

In-Database Machine Learning ............................................................... 6

In-Database Machine Learning Features .................................................. 7

End-to-End Machine Learning Process in One Place ................................ 7

Machine Learning Model Management .................................................... 8

Integration with External Machine Learning .......................................... 8

User-Defined Extensions (UDxs) ............................................................. 8

Predictive Model Markup Language (PMML) Support ............................... 9

TensorFlow Integration ........................................................................... 9

Vertica's Built-in Algorithms for Supervised and Unsupervised Learning ... 10

Logistic Regression ................................................................................. 11

Linear Regression ..................................................................................... 12

Naïve Bayes .............................................................................................. 13

Data Preparation for Machine Learning .................................................. 13

What Can You Do With Vertica’s In-Database Machine Learning? An Example..... 15

Step 1. Load the Data .............................................................................. 16

Step 2. Create a Linear Regression Model .............................................. 16

Step 3. Evaluate Goodness of Fit .......................................................... 18

Use Cases for Machine Learning Across Different Industries .................. 18

Summary .................................................................................................. 19

Resources ................................................................................................. 19

Learn More At .......................................................................................... 19
Purpose of this White Paper

With the ever-increasing volume, velocity, and variety of data, it’s harder than ever for organizations to discover the critical hidden insights contained in their data to create competitive differentiation and increase profitability. This white paper explores the new approach data scientists and BI analysts take in leveraging data for game-changing insights, and it explains how in-database machine learning in Vertica eliminates the constraints of small-scale analytics when applied to extremely large or high velocity data sets for highest possible accuracy at lightning speeds. In addition, it explains how the unique benefits of Vertica’s end-to-end in-database machine learning both complements and extends the capabilities of traditional tools, including C++, Java, Python, and R.

Machine Learning: A Competitive Advantage

In today’s data-driven world, creating a competitive advantage depends on your ability to transform massive volumes of data into meaningful insights rapidly, and act on those insights. Companies that use advanced analytics and machine learning are twice as likely to be top financial performers, and three times more likely to execute effective decisions.¹ 88% of companies expect to increase the speed of innovation as a result of their use of artificial intelligence (AI) and machine learning (ML).²

Unfortunately, the huge increase in velocity, volume, and variety of data has simultaneously increased the complexity of building predictive models. Too often, machine learning tools cannot process massive data sets at the modern speed and scale of business, or they require a huge investment in skilled people’s time to accomplish the simplest goals. Vertica’s in-database machine learning allows you to accelerate business outcomes with no limits and no compromises.

What is Machine Learning?

Machine learning is a mathematical way of identifying patterns and relationships in data, which can be used to predict outcomes. Leveraging machine learning can provide in-depth understanding of many essential aspects of business. For example, a company can use the patterns in customer behavior to personalize the consumer experience, prevent churn, detect fraud, and increase the bottom line.

This is creating a fundamental shift in the way businesses are operating—from being reactive to being proactive. Machine learning helps data scientists and analysts unlock valuable insights from huge, difficult-to-understand data sets. Those insights facilitate more informed decision making.

However, to capture the full value of all accessible data, we need to change the scale and speed through which data for ML algorithms is prepared, and the ML models are trained, deployed, and managed. Data volumes are far too large for

¹ “Creating Value through Advanced Analytics.” Bain & Company. February 2015
many data science and machine learning tools to handle, and the relationships between disparate data sources—from back-end customer databases to clickstream behavior or sensor logs—are far too complex for ordinary business intelligence tools.

Vertica’s in-database machine learning tools free data scientists from the constraints of traditional approaches and increase model accuracy by allowing data scientists to discover and display patterns buried in ever-larger data sets. More accurate predictions can be turned into better customer service, superior products, reduced downtime, increased profit margin, and an overall competitive advantage in many industries.

**Barriers to Applying Machine Learning at Scale**

There are several challenges when it comes to applying machine learning to the massive volumes of data that organizations collect and store. Despite the complexity of predictive analytics, today’s business leaders expect insights in ever shorter time frames. However, many machine learning algorithms were not designed for distributed processing, which is the only way to process more data faster. The algorithms, and the data exploration and preparation functions that support them, must be purpose-built to take advantage of modern distributed and parallel engines.

Traditionally, data scientists had to build and tune models using only small subsets of data (called down-sampling). This often results in inaccuracies, delays, increased costs to deploy, and generally slower access to critical insights:

- **Slower development:** Delays in moving large volumes of data between systems increases the amount of time data scientists spend creating predictive analytics models, which delays time-to-value.
- **Inaccurate predictions:** It is a basic fact of machine learning that more data leads to greater accuracy. It even trumps a better algorithm. Since large data sets cannot be processed due to memory and computational limitations with traditional methods, only a subset of the data is often used to train models, reducing the accuracy of subsequent insights and putting at risk any business decisions based on these insights.
- **Delayed deployment:** Owing to the differences in development and production data environments, deploying predictive models into production is often slow and tedious, sometimes requiring rebuilding everything from scratch in a different technology. This jeopardizes the success of large-scale analytics initiatives and drastically increases time to production.
- **Increased costs:** Additional hardware, software tools, and administrator and developer resources are required for moving data, building duplicate predictive models, and running them on multiple platforms to obtain the desired results.
Vertica provides several machine learning functions for performing in-database predictive analytics on large data sets to increase accuracy of predictions and accelerate access to hidden insights.

Vertica Analytics Platform Delivers Predictive Analytics at Speed and Scale

Built from the ground up to handle massive volumes of data, Vertica is designed specifically to address the challenges of big data analytics using a balanced, distributed, compressed, columnar paradigm. Vertica includes many of the most commonly used machine learning algorithms and data preparation, exploration, and model evaluation functions already optimized for distributed systems, and manages models as first-class citizens. The Vertica Analytics Platform eliminates or minimizes many of the barriers to applying ML at scale.

Massively parallel processing enables data to be handled at petabyte scale for your most demanding use cases. Columnar storage capabilities provide data compression and reduce analytics query times down from hours to minutes or minutes to seconds, compared to legacy technologies. In addition, as a full-featured analytics system, Vertica provides advanced SQL-based analytics including pattern matching, geospatial analytics, time-series, and many more capabilities, all built-in.

As an optimized platform enabling advanced predictive modeling to be run from within the database and across large data sets, Vertica eliminates the need for data duplication and processing on alternative platforms—typically requiring multi-vendor offerings—that add complexity and cost. Now that same speed, scale, and performance used for Business Intelligence (BI) analytics can be used to machine learning-based predictive analytics, both on a single system for additional simplification and cost savings.

Implementing Machine Learning with the Vertica Analytics Platform

Machine learning is most effective when applied to very large data sets and thus is a natural fit for Vertica, which is designed for big data. There are three primary ways of deploying machine learning capabilities in Vertica: Vertica’s in-database machine learning algorithms, user-defined extensions (UDxs), and importing external functions through PMML (Predictive Model Markup Language) or TensorFlow’s frozen graph format.

In-Database Machine Learning

Vertica provides in-database machine learning algorithms, including some of the most popular, which can be trained, evaluated and deployed natively on large data sets, accelerating decision making with ease. Built into Vertica’s core — with no need to download and install separate packages — the in-database machine learning algorithms deliver:

- **Scalability:** While most external tools like R and Python have limitations on the size of the data set they can handle — forcing users to down-
“Vertica’s new in-database machine learning capabilities are like gold! We are extremely excited to train our machine learning models on our data in Vertica and ship them with our platform to run on our customers’ clusters. This is something that is much harder with any other tool.”

Abhishek Sharma
Data Scientist
Fidelis Cybersecurity

In-Database Machine Learning Features

Vertica provides many built-in machine learning functions for performing in-database predictive analytics on large data sets. Some of the major use cases for machine learning applications revolve around classification, clustering, and prediction. Vertica’s built-in machine learning algorithms cover all of these areas with k-means, bisecting k-means, linear regression, logistic regression, support vector machines (for regression and classification), random forest (for regression and classification) and naïve Bayes, among others.

End-to-End Machine Learning Process in One Place

From data preparation to model scoring and deployment, Vertica supports the entire machine learning process. Users can prepare data with functions for normalization, outlier detection, finding correlations, sampling, imbalanced data processing, missing value imputation, and more. Fast joins of disparate data sets are sample — Vertica’s in-database machine learning takes advantage of the larger data sets supported to provide more accurate insights.

- **Simplicity:** Vertica’s native data ingest, preparation, and model management capabilities cover the entire data mining lifecycle, eliminating the need to export and load data into another tool for exploration or preparation. In addition, users can train, test, and deploy machine learning models using a familiar SQL interface. This speeds productivity, reduces time-to-value, and expands the potential user base.

- **Speed:** Vertica’s in-database machine learning accelerates model training and prediction by distributing the workload across Vertica’s massively parallel processing (MPP) architecture, including the use of multiple nodes in the cluster, and dividing the workload for faster computation when required.
“Vertica enables the deep analytics that our product teams use to ensure the best product is being delivered to create the most value for the farmer. Its scalable machine learning and data visualization is critical in building a data-driven culture.”

Erich Hochmuth
Big Data Director
The Climate Corporation

a normal part of database operations, which greatly shortens data preparation time. Machine learning models can be trained and tested on massive data sets, and then evaluated with model-level statistics such as ROC curves and confusion matrices. All of this is done with a simple SQL interface that doesn’t require specialized programming knowledge, and speeds team productivity.

**Machine Learning Model Management**

Because Vertica trains machine learning models inside the database using SQL commands, it creates a data science repository for all activities that are shared across all data scientists using the platform. With traditional approaches, a model might exist on someone’s laptop. If that individual is unavailable, the model may be inaccessible. Furthermore, without a model repository it can be difficult to compare models, to see how they were generated, and what data sets were used.

In Vertica, models are objects in the database, just like tables. They are visible and readable by anyone with authorized access. They can also be easily exported from a development, test, or sandbox environment into a production environment (or many production environments). Most traditional approaches involve processes that make putting models into production very complicated. An in-database machine learning development platform means much of that hassle simply goes away.

**Integration with External Machine Learning**

Vertica supports the entire machine learning process. However, in today’s business world multiple tools and programming languages may be used within the same organization for different machine learning use cases. Vertica allows you to work with these tools while also leveraging powerful capabilities, such as model management and distributed execution on very large data sets.

**User-Defined Extensions (UDxs)**

Vertica connects to hundreds of applications, data sources, ETL tools, and visualization tools – and what it doesn’t connect to out of the box can be easily integrated. A UDx allows you to develop your own tools for the Vertica Analytics Platform, including
“We started using Vertica data analytics to pinpoint the causes of fraud to close any loopholes and be more proactive in our fraud prevention approach. As a result, our fraud-related costs reduced by eighty-five percent between 2017 and 2018.”

Alfonso Lara
IT Director
Maxcom Telecomunicaciones

new types of data analysis and the ability to parse and load new types of data. UDxs can be developed in C++, Java, Python, or R using Vertica’s powerful SDK.

The broad array of user-defined capabilities (functions, transforms, aggregates, analytics, and loading) leverages the MPP capabilities of Vertica, increasing the power and flexibility of procedural code by bringing it closer to the data (structured, semi-structured, or unstructured). Vertica’s user interface makes it easy to deploy and use procedural extensions, simplifying operational practices and promoting code reuse.

**Predictive Model Markup Language (PMML) Support**

With Vertica’s PMML model import capability, users can build a machine learning model in the tools of their choice and then bring that model to Vertica for management, archiving, and prediction on very large data sets. As a distributed analytical database, Vertica is often home to the most recent (hot) data. Bringing models close to where that data resides provides fast and timely predictions.

Vertica also supports PMML export. With this feature, users can train machine learning models on large volumes of data in distributed Vertica clusters. Using large data sets to train machine learning models usually results in more accurate models that are less prone to over-fitting. These models built in Vertica can then be exported for prediction using other tools. One common use case: Train the model in-database, using the maximum amount of data available. After evaluation and scoring, export the model to an edge node or device. There, it can reside close to the source and make predictions with the lowest possible latency.

**TensorFlow Integration**

TensorFlow is a popular open source machine learning platform that can utilize Graphics Processing Units (GPUs) to train highly sophisticated machine learning models such as Neural Networks efficiently. Vertica provides the capability to import TensorFlow frozen graph models into Vertica. Once trained externally, these models can be brought to Vertica to sit close to the data as it flows in, and make
The k-means algorithms are a type of unsupervised learning algorithm, meaning the input data is unlabeled. The purpose of k-means and bisecting k-means is to partition $n$ observations into $k$ clusters.

"Our Vertica platform is instrumental in many areas of our business—creating predictive algorithms, serving up product recommendations, powering insight to our mobile apps, and generating daily reports and ad-hoc queries. It’s crucial for enabling us to be more agile with data."

Bruce Yen, Director-Business Intelligence
GUESS?, Inc.

fast predictions. This simplifies the process of putting models into production, minimizes extensive data movement, and can result in significant cost savings for users that may not want to keep the expensive GPU-based infrastructure required to periodically train these models running all the time.

Vertica’s Built-in Algorithms for Supervised and Unsupervised Learning

Clustering with K-Means & Bisecting K-Means
Clustering detects natural groupings within the data, meaning that items within a cluster have more in common with each other than they do with items outside of the cluster.

Each of these algorithms takes the unlabeled data and clusters the data points into $K$ different clusters based on similarities between the data points. K-means assigns each observation to the cluster with the nearest mean. That nearest mean is also known as the cluster center. The resulting model can be used to add new data to existing clusters later by assigning it to the cluster with the nearest mean or cluster center. Bisecting K-means works by dividing the data in half, and then dividing the largest next cluster in half until the data is divided into $K$ clusters. Bisecting K-means works differently but produces similar results. It has the advantage of storing all values of $K$ between 1 and the given $K$ such that each cluster groupings can be easily compared without having to generate new models for each value of $K$. K-means and bisecting K-means have a wide number of applications, including:

- **Customer segmentation**: Segment customers and buyers into distinct groups (clusters) based on similar attributes such as age, income, or product preferences, to target promotions, provide support, and explore cross-sell opportunities.
- **Fraud detection**: Identify individual observations that don’t align to a distinct group (cluster) and identify types of clusters that are more likely to be at risk of fraudulent behavior.

You can apply these algorithms using basic SQL syntax:

```sql
KMEANS ('model_name', 'input_table', 'input_columns', 'num_clusters')
```

Or

```sql
BISECTING_KMEANS ('model_name', 'input_table', 'input_columns', 'num_clusters')
```

The optional parameters for these functions include an epsilon value (to adjust convergence), maximum number of iterations, three options for initial cluster centers, and an output view. Bisecting k-means also includes optional parameters to control the method and parameters for which bisecting occurs, such as the bisecting method, minimum divisible cluster size, and bisecting iterations.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmeans</td>
<td>Find k cluster centers for an input table/view</td>
</tr>
<tr>
<td>bisecting_kmeans</td>
<td>Find k cluster centers for an input table/view by bisecting clusters into iterative pairs</td>
</tr>
<tr>
<td>get_model_summary</td>
<td>Display the cluster centers along with some evaluation metrics</td>
</tr>
<tr>
<td>apply_kmeans</td>
<td>Given an existing k-means model, assign rows from an input table to the defined cluster</td>
</tr>
</tbody>
</table>

**Logistic Regression**

Logistic regression is used to classify data into two groups based on the logical relationship between independent variables, or features, and some dependent variable, or outcome. The outcome of logistic regression is a binary value which represents an outcome such as true/false, pass/fail, yes/no, or 1/0. Logistic Regression can also be a probability between the two groups. You can use logistic regression models to:

- Use a loan applicant’s credit history, income, and loan conditions (predictors) to determine the probability that the applicant will default on a loan (response). The result can be used for approving, denying, or changing loan terms.

- Predict the likelihood that a particular mechanical part of a system will malfunction or require maintenance (response) based on operating conditions and diagnostic measurements (predictors).

- Determine the likelihood of a patient’s successful response to a particular medicine or treatment (response) based on factors like age, blood pressure, smoking, and drinking habits (predictors).
Linear regression is primarily used to predict continuous numerical outcomes in linear relationships along a continuum.

You can apply the logistic regression algorithm using basic SQL syntax:

```
LOGISTIC_REG (‘model_name’, ‘input_table’, ‘response_column’, ‘predictor_columns’)
```

The optional parameters for this function include optimizer type, regularization method (lasso, ridge or ENet), epsilon value, the lambda and alpha values (for regularization) and the maximum number of iterations. When the model is called (with predict_logistic_reg), you can show either binary output, or a probabilistic output.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>logistic_reg</td>
<td>Build a logistic regression model with the given inputs</td>
</tr>
<tr>
<td>get_model_summary</td>
<td>Display the coefficient, intercept, p-value and z-value for the model</td>
</tr>
<tr>
<td>predict_logistic_reg</td>
<td>Using the trained logistic regression model, apply the results to a given data set</td>
</tr>
</tbody>
</table>

**Linear Regression**

Linear regression is primarily used to predict continuous numerical outcomes in linear relationships along a continuum. Using linear regression, you can model the linear relationship between independent variables, or features, and a dependent variable, or outcome. For example, linear regression models allow you to:

Model residential home prices (response) as a function of the homes’ features (predictors), such as living area, number of bedrooms, or number of bathrooms, etc.

Model the demand for a service or good (response) based on its features (predictors)—for example, demand for different models of laptops based on monitor size, weight, price, operating system, etc.

Determine linear relationship between the compressive strength of concrete (response) and varying amounts of its components (predictors) like cement, slag, fly ash, water, super plasticizer, coarse aggregate, etc.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear_reg</td>
<td>Build a linear regression model with the given inputs</td>
</tr>
<tr>
<td>get_model_summary</td>
<td>Display the coefficient, intercept, p-value and z-value for the model</td>
</tr>
<tr>
<td>predict_linear_reg</td>
<td>Using the trained linear regression model, apply the results to a given data set</td>
</tr>
</tbody>
</table>

You can apply the linear regression algorithm using basic SQL syntax:
In-Database Machine Learning Features

LINEAR_REG (‘model_name’, ‘input_table’, ‘response_column’, ‘predictor_columns’)

The optional parameters for this function include the optimizer method (BFGS, Newton or CGD), the regularization method, epsilon value, the lambda and alpha for regularization and the maximum number of iterations.

Naïve Bayes

The Naïve Bayes algorithm is used to classify data. The algorithm uses different features as predictors to calculate the probability of a specific class, or more than one class. For instance, to predict the probability that an email is spam, you would use words normally associated with spam. The same would be true if you want to classify a document based on content—for example, news, finance, sports, etc.

This supervised machine learning algorithm has several applications, including:

- Classifying documents into categories such as email into spam, clutter, social, etc.
- Classifying news articles into categories like sports or politics
- Facial recognition applications

You can apply the Naïve Bayes algorithm using basic SQL syntax:

NAIVE_BAYES (‘model_name’, ‘input_table’, ‘response_column’, ‘predictor_columns’)

Naïve Bayes takes an optional parameter called alpha which can be used to control Laplace smoothing.

In addition to the above machine learning algorithms, Vertica provides in-database machine learning functions for Support Vector Machines (SVM) regression and classification, Random Forest regression and classification, SVD, PCA and others. XGBoost is being added at the date of writing, and more are being added. Check your current version’s documentation to see if the algorithms you need are supported. Learn more at:

www.vertica.com/machinelearning

Data Preparation for Machine Learning

Data preparation is an important pre-processing step for data analysis, often occupying most of the time to complete an advanced data analysis project. Vertica has a rich set of built-in analytic functions, including interpolation, balancing, pattern matching, event series joins, correlation detection, advanced aggregation, outlier detection, and principal component analysis (PCA). These functions support the data preparation process, increase the efficiency of data analysis work, and ultimately speed up time-to-value. This allows data scientists to perform the entire data science workflow right inside the database.
Vertica includes a rich set of data preparation functions, including:

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td>Creates an equal distribution of data, either by over-, or under-sampling classes</td>
</tr>
<tr>
<td>Detect_outliers</td>
<td>Identifies outliers within a given data set</td>
</tr>
<tr>
<td>Impute</td>
<td>Fills in missing values with a mean or mode, based on observed values</td>
</tr>
<tr>
<td>Normalize</td>
<td>Normalizes disparate data into a consistent range</td>
</tr>
<tr>
<td>Normalize_fit</td>
<td>Creates a normalized model for re-use</td>
</tr>
<tr>
<td>One_hot_encoder_fit</td>
<td>Applies one-hot encoding to categorical columns by replacing them with binary vectors</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis – a method of feature reduction</td>
</tr>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition – another feature reduction algorithm</td>
</tr>
</tbody>
</table>

**Model Evaluation**

Once models are built, they need to be evaluated. Vertica includes a variety of popular model evaluation functions built-in to allow you to affirm the validity of your regression and classification models. Some evaluation functions are used to evaluate regression models, and others are used for classification. In addition, Random Forest supports functions specific to it as well.

<table>
<thead>
<tr>
<th>Model</th>
<th>Confusion_Matrix</th>
<th>Error_Rate</th>
<th>Lift_Table</th>
<th>PRC</th>
<th>ROC</th>
<th>Rsquared</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>RF Classification</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>SVM Classification</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Linear Regression</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>RF Regression</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>SVM Regression</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

**Cross Validation**

Vertica also supports cross validation. Cross validation is an evaluation method that allows you to run a trained model against a given data set through an iteration of “folds” whereby each fold includes a different set of data as training data, and the remaining data as test data. Cross validation then shows the average results against n-folds of the data. Cross validation allows for numerous customizations and for a wide variety of output metrics for evaluation.
What Can You Do With Vertica’s In-Database Machine Learning? An Example

The following is an example of a linear regression model that uses the Prestige Data Set. This data set is used to determine the relationship between income and other variables. In this example, we will demonstrate how to load the data set and use Vertica’s linear reg function to better understand how the predictors impact the response.

The data set contains the following information:

- Name of occupation
- Education (in years)
- Income—Average income of incumbents in dollars in 1971
- Women—Percentage of incumbents who are women
- Prestige—The Pineo-Porter prestige score for the occupation, from a social survey conducted in the mid-1960s
- Census—Canadian Census occupational code
- Type—Occupational type, where bc indicates blue collar, wc indicates white collar, and prof indicates professional, managerial, or technical

The goal is to build a linear regression model using this data set that predicts income based on the other values in the data set and then evaluate the model’s “goodness of fit.”

To begin, how do we choose which variables to use for this model? The type column can be eliminated because Vertica does not currently support categorical predictors. Since the occupation and census columns contain many unique values, they are unlikely to predict income under this use case.

That leaves the education, prestige, and women columns.

---

If you need to consider a categorical predictor for training a linear regression model in Vertica, convert it to a numerical value in advance. There are several techniques for converting a variable from categorical to numeric. For example, you can use one-hot encoding.

### Step 1. Load the Data

The following shows the table definition to store the Prestige Data Set:

```sql
=> DROP TABLE IF EXISTS public.prestige CASCADE;
=> CREATE TABLE public.prestige
  ( occupation VARCHAR(25),
    education NUMERIC(5,2), -- avg years of education
    income INTEGER, -- avg income
    women NUMERIC(5,2), -- % of woman
    prestige NUMERIC(5,2), -- avg prestige rating
    census INTEGER, -- occupation code
    type CHAR(4) -- Professional & managerial (prof)
  ) -- White collar (wc)
  -- Blue collar (bc)
  -- Not Available (na)
```

Vertica supports a number of ways to load data – from files such as delimited text, or Parquet, ORC or Avro formats, to name a few. To load the data from the Prestige Data Set into the Vertica table, use the following SQL statement:

```sql
=> COPY public.prestige
  FROM '/home/dbadmin/prestige.txt'
  DELIMITER ','
  SKIP 1
  ABORT ON ERROR DIRECT ;
```

### Step 2. Create a Linear Regression Model

Now let’s use the Vertica machine learning function LINEAR_REG to create the linear regression model.

To create the model, run the LINEAR_REG function against the public.prestige table as shown. In this statement, income is the response, and the predictors are education, women, and prestige:
What Can You Do With Vertica's In-Database Machine Learning? An Example

```sql
SELECT LINEAR_REG( 'lnr_prestige', 'public.prestige', 'income', 'education, women, prestige');
```

This statement is trying to identify the coefficients of the following equation:

\[
\text{income} = \alpha + \beta_1 \text{education} + \beta_2 \text{women} + \beta_3 \text{prestige}
\]

After you create the model, use the `GET_MODEL_SUMMARY` function to observe the model's properties:

```sql
SELECT GET_MODEL_SUMMARY(using parameters model_name = 'lnr_prestige');
```

`GET_MODEL_SUMMARY` returns the following information:

<table>
<thead>
<tr>
<th>predictor</th>
<th>coefficient</th>
<th>std_err</th>
<th>t_value</th>
<th>p_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>-253.84973</td>
<td>1086.15687</td>
<td>-0.23371</td>
<td>0.81569</td>
</tr>
<tr>
<td>education</td>
<td>177.19903</td>
<td>187.63223</td>
<td>0.94440</td>
<td>0.34729</td>
</tr>
<tr>
<td>women</td>
<td>-50.89570</td>
<td>8.55618</td>
<td>-5.94841</td>
<td>0.00000</td>
</tr>
<tr>
<td>prestige</td>
<td>141.43535</td>
<td>29.98961</td>
<td>4.72876</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

Using these coefficients, you can rewrite equation to read:

\[
\text{income} = -253.8390442 + 177.1907572 \times \text{education} - 50.950663456 \times \text{women} + 141.463157 \times \text{prestige}
\]

Finally, let's explore how to measure how well the linear regression model fits the data, or goodness of fit. In Vertica, the `PREDICT_LINEAR_REG` function applies a linear regression model on the input table. You can read more about this function in the Vertica documentation.
Step 3. Evaluate Goodness of Fit

A common method used to test how well your linear regression model fits the observed data is the coefficient of determination. The coefficient is defined in the following equation:

\[
R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}
\]

The coefficient of determination R2 ranges between 0 (no fit) and 1 (perfect fit). To calculate the coefficient of determination, use the Vertica RSQUARED function:

```sql
SELECT RSQUARED(income, predicted) OVER()
FROM (SELECT income, PREdICT_LINEAR_REG (prestige, women USING PARAMETERS MODEL_NAME='lnr_prestige') AS predicted
FROM public.prestige
) x;
```

<table>
<thead>
<tr>
<th>rsq</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63995924449805</td>
<td>Of 102 rows, 102 were used</td>
</tr>
</tbody>
</table>

The evaluation of the coefficient of determination often depends on what area you are investigating. In the social sciences, a coefficient of 0.6 is considered quite good.

When evaluating a model, it is important to consider multiple metrics. A single metric could give you a good value, but the model itself may not be as useful as you need. It is important to understand the R-square value, as well as the other metrics, to evaluate the goodness of fit.

Use Cases for Machine Learning Across Different Industries

The in-database machine learning capabilities of the Vertica Analytics Platform can be used to drive tangible business benefits across a broad range of industries:

- Financial services organizations can discover fraud, detect investment opportunities, identify clients with high-risk profiles, or determine the probability of an applicant defaulting on a loan.
- Government agencies, such as public safety and utilities, can use machine learning to help detect fraud, minimize identity theft, and analyze data from smart meters to identify ways to increase efficiency and save money.
Vertica’s in-database machine learning capabilities allow users to take advantage of Big Data while simplifying and speeding up their predictive analytics processes to make better-informed decisions, compete more effectively, and accelerate time-to-insight. At the same time, it offers freedom of choice through its support for user-defined extensions programmed in C++, Java, Python, or R.

To experience the benefits of Vertica in your own environment:

Watch the webcast: Data Preparation for Machine Learning at Scale

Read the blog posts: In-Database Machine Learning 1 – Why Would You Do That? and In-Database Machine Learning 2: Calculate a Correlation Matrix – A Data Exploration Post

Try the Vertica Community Edition and get started with your in-database machine learning initiative – analyze up to 1 TB of data across 3 nodes on-premises, in the clouds, or in hybrid environments.

Resources

Machine Learning for Predictive Analytics, Vertica documentation.

Learn more at Vertica Academy.

Learn More At
vertica.com/machinelearning