Expand Menu
-
Home / Workshop / Full Stack / Vdataframe Magic / Index

VerticaPy
Python API for Vertica Data Science at Scale
The 'Magic' Methods of the vDataFrame¶
VerticaPy 0.3.2 introduces the 'Magic' methods, which offer some additional flexilibility for mathematical operations in the vDataFrame. These methods let you handle many operations in a 'pandas-like' or Pythonic style.
In [11]:
from verticapy.datasets import load_titanic
titanic = load_titanic()
display(titanic)
123 pclassInt | 123 survivedInt | Abc Varchar(164) | Abc sexVarchar(20) | 123 ageNumeric(6,3) | 123 sibspInt | 123 parchInt | Abc ticketVarchar(36) | 123 fareNumeric(10,5) | Abc cabinVarchar(30) | Abc embarkedVarchar(20) | Abc boatVarchar(100) | 123 bodyInt | Abc home.destVarchar(100) | |
1 | 1 | 0 | female | 2.0 | 1 | 2 | 113781 | 151.55 | C22 C26 | S | [null] | [null] | Montreal, PQ / Chesterville, ON | |
2 | 1 | 0 | male | 30.0 | 1 | 2 | 113781 | 151.55 | C22 C26 | S | [null] | 135 | Montreal, PQ / Chesterville, ON | |
3 | 1 | 0 | female | 25.0 | 1 | 2 | 113781 | 151.55 | C22 C26 | S | [null] | [null] | Montreal, PQ / Chesterville, ON | |
4 | 1 | 0 | male | 39.0 | 0 | 0 | 112050 | 0.0 | A36 | S | [null] | [null] | Belfast, NI | |
5 | 1 | 0 | male | 71.0 | 0 | 0 | PC 17609 | 49.5042 | [null] | C | [null] | 22 | Montevideo, Uruguay | |
6 | 1 | 0 | male | 47.0 | 1 | 0 | PC 17757 | 227.525 | C62 C64 | C | [null] | 124 | New York, NY | |
7 | 1 | 0 | male | [null] | 0 | 0 | PC 17318 | 25.925 | [null] | S | [null] | [null] | New York, NY | |
8 | 1 | 0 | male | 24.0 | 0 | 1 | PC 17558 | 247.5208 | B58 B60 | C | [null] | [null] | Montreal, PQ | |
9 | 1 | 0 | male | 36.0 | 0 | 0 | 13050 | 75.2417 | C6 | C | A | [null] | Winnipeg, MN | |
10 | 1 | 0 | male | 25.0 | 0 | 0 | 13905 | 26.0 | [null] | C | [null] | 148 | San Francisco, CA | |
11 | 1 | 0 | male | 45.0 | 0 | 0 | 113784 | 35.5 | T | S | [null] | [null] | Trenton, NJ | |
12 | 1 | 0 | male | 42.0 | 0 | 0 | 110489 | 26.55 | D22 | S | [null] | [null] | London / Winnipeg, MB | |
13 | 1 | 0 | male | 41.0 | 0 | 0 | 113054 | 30.5 | A21 | S | [null] | [null] | Pomeroy, WA | |
14 | 1 | 0 | male | 48.0 | 0 | 0 | PC 17591 | 50.4958 | B10 | C | [null] | 208 | Omaha, NE | |
15 | 1 | 0 | male | [null] | 0 | 0 | 112379 | 39.6 | [null] | C | [null] | [null] | Philadelphia, PA | |
16 | 1 | 0 | male | 45.0 | 0 | 0 | 113050 | 26.55 | B38 | S | [null] | [null] | Washington, DC | |
17 | 1 | 0 | male | [null] | 0 | 0 | 113798 | 31.0 | [null] | S | [null] | [null] | [null] | |
18 | 1 | 0 | male | 33.0 | 0 | 0 | 695 | 5.0 | B51 B53 B55 | S | [null] | [null] | New York, NY | |
19 | 1 | 0 | male | 28.0 | 0 | 0 | 113059 | 47.1 | [null] | S | [null] | [null] | Montevideo, Uruguay | |
20 | 1 | 0 | male | 17.0 | 0 | 0 | 113059 | 47.1 | [null] | S | [null] | [null] | Montevideo, Uruguay | |
21 | 1 | 0 | male | 49.0 | 0 | 0 | 19924 | 26.0 | [null] | S | [null] | [null] | Ascot, Berkshire / Rochester, NY | |
22 | 1 | 0 | male | 36.0 | 1 | 0 | 19877 | 78.85 | C46 | S | [null] | 172 | Little Onn Hall, Staffs | |
23 | 1 | 0 | male | 46.0 | 1 | 0 | W.E.P. 5734 | 61.175 | E31 | S | [null] | [null] | Amenia, ND | |
24 | 1 | 0 | male | [null] | 0 | 0 | 112051 | 0.0 | [null] | S | [null] | [null] | Liverpool, England / Belfast | |
25 | 1 | 0 | male | 27.0 | 1 | 0 | 13508 | 136.7792 | C89 | C | [null] | [null] | Los Angeles, CA | |
26 | 1 | 0 | male | [null] | 0 | 0 | 110465 | 52.0 | A14 | S | [null] | [null] | Stoughton, MA | |
27 | 1 | 0 | male | 47.0 | 0 | 0 | 5727 | 25.5875 | E58 | S | [null] | [null] | Victoria, BC | |
28 | 1 | 0 | male | 37.0 | 1 | 1 | PC 17756 | 83.1583 | E52 | C | [null] | [null] | Lakewood, NJ | |
29 | 1 | 0 | male | [null] | 0 | 0 | 113791 | 26.55 | [null] | S | [null] | [null] | Roachdale, IN | |
30 | 1 | 0 | male | 70.0 | 1 | 1 | WE/P 5735 | 71.0 | B22 | S | [null] | 269 | Milwaukee, WI | |
31 | 1 | 0 | male | 39.0 | 1 | 0 | PC 17599 | 71.2833 | C85 | C | [null] | [null] | New York, NY | |
32 | 1 | 0 | male | 31.0 | 1 | 0 | F.C. 12750 | 52.0 | B71 | S | [null] | [null] | Montreal, PQ | |
33 | 1 | 0 | male | 50.0 | 1 | 0 | PC 17761 | 106.425 | C86 | C | [null] | 62 | Deephaven, MN / Cedar Rapids, IA | |
34 | 1 | 0 | male | 39.0 | 0 | 0 | PC 17580 | 29.7 | A18 | C | [null] | 133 | Philadelphia, PA | |
35 | 1 | 0 | female | 36.0 | 0 | 0 | PC 17531 | 31.6792 | A29 | C | [null] | [null] | New York, NY | |
36 | 1 | 0 | male | [null] | 0 | 0 | PC 17483 | 221.7792 | C95 | S | [null] | [null] | [null] | |
37 | 1 | 0 | male | 30.0 | 0 | 0 | 113051 | 27.75 | C111 | C | [null] | [null] | New York, NY | |
38 | 1 | 0 | male | 19.0 | 3 | 2 | 19950 | 263.0 | C23 C25 C27 | S | [null] | [null] | Winnipeg, MB | |
39 | 1 | 0 | male | 64.0 | 1 | 4 | 19950 | 263.0 | C23 C25 C27 | S | [null] | [null] | Winnipeg, MB | |
40 | 1 | 0 | male | [null] | 0 | 0 | 113778 | 26.55 | D34 | S | [null] | [null] | Westcliff-on-Sea, Essex | |
41 | 1 | 0 | male | [null] | 0 | 0 | 112058 | 0.0 | B102 | S | [null] | [null] | [null] | |
42 | 1 | 0 | male | 37.0 | 1 | 0 | 113803 | 53.1 | C123 | S | [null] | [null] | Scituate, MA | |
43 | 1 | 0 | male | 47.0 | 0 | 0 | 111320 | 38.5 | E63 | S | [null] | 275 | St Anne's-on-Sea, Lancashire | |
44 | 1 | 0 | male | 24.0 | 0 | 0 | PC 17593 | 79.2 | B86 | C | [null] | [null] | [null] | |
45 | 1 | 0 | male | 71.0 | 0 | 0 | PC 17754 | 34.6542 | A5 | C | [null] | [null] | New York, NY | |
46 | 1 | 0 | male | 38.0 | 0 | 1 | PC 17582 | 153.4625 | C91 | S | [null] | 147 | Winnipeg, MB | |
47 | 1 | 0 | male | 46.0 | 0 | 0 | PC 17593 | 79.2 | B82 B84 | C | [null] | [null] | New York, NY | |
48 | 1 | 0 | male | [null] | 0 | 0 | 113796 | 42.4 | [null] | S | [null] | [null] | [null] | |
49 | 1 | 0 | male | 45.0 | 1 | 0 | 36973 | 83.475 | C83 | S | [null] | [null] | New York, NY | |
50 | 1 | 0 | male | 40.0 | 0 | 0 | 112059 | 0.0 | B94 | S | [null] | 110 | [null] | |
51 | 1 | 0 | male | 55.0 | 1 | 1 | 12749 | 93.5 | B69 | S | [null] | 307 | Montreal, PQ | |
52 | 1 | 0 | male | 42.0 | 0 | 0 | 113038 | 42.5 | B11 | S | [null] | [null] | London / Middlesex | |
53 | 1 | 0 | male | [null] | 0 | 0 | 17463 | 51.8625 | E46 | S | [null] | [null] | Brighton, MA | |
54 | 1 | 0 | male | 55.0 | 0 | 0 | 680 | 50.0 | C39 | S | [null] | [null] | London / Birmingham | |
55 | 1 | 0 | male | 42.0 | 1 | 0 | 113789 | 52.0 | [null] | S | [null] | 38 | New York, NY | |
56 | 1 | 0 | male | [null] | 0 | 0 | PC 17600 | 30.6958 | [null] | C | 14 | [null] | New York, NY | |
57 | 1 | 0 | female | 50.0 | 0 | 0 | PC 17595 | 28.7125 | C49 | C | [null] | [null] | Paris, France New York, NY | |
58 | 1 | 0 | male | 46.0 | 0 | 0 | 694 | 26.0 | [null] | S | [null] | 80 | Bennington, VT | |
59 | 1 | 0 | male | 50.0 | 0 | 0 | 113044 | 26.0 | E60 | S | [null] | [null] | London | |
60 | 1 | 0 | male | 32.5 | 0 | 0 | 113503 | 211.5 | C132 | C | [null] | 45 | [null] | |
61 | 1 | 0 | male | 58.0 | 0 | 0 | 11771 | 29.7 | B37 | C | [null] | 258 | Buffalo, NY | |
62 | 1 | 0 | male | 41.0 | 1 | 0 | 17464 | 51.8625 | D21 | S | [null] | [null] | Southington / Noank, CT | |
63 | 1 | 0 | male | [null] | 0 | 0 | 113028 | 26.55 | C124 | S | [null] | [null] | Portland, OR | |
64 | 1 | 0 | male | [null] | 0 | 0 | PC 17612 | 27.7208 | [null] | C | [null] | [null] | Chicago, IL | |
65 | 1 | 0 | male | 29.0 | 0 | 0 | 113501 | 30.0 | D6 | S | [null] | 126 | Springfield, MA | |
66 | 1 | 0 | male | 30.0 | 0 | 0 | 113801 | 45.5 | [null] | S | [null] | [null] | London / New York, NY | |
67 | 1 | 0 | male | 30.0 | 0 | 0 | 110469 | 26.0 | C106 | S | [null] | [null] | Brockton, MA | |
68 | 1 | 0 | male | 19.0 | 1 | 0 | 113773 | 53.1 | D30 | S | [null] | [null] | New York, NY | |
69 | 1 | 0 | male | 46.0 | 0 | 0 | 13050 | 75.2417 | C6 | C | [null] | 292 | Vancouver, BC | |
70 | 1 | 0 | male | 54.0 | 0 | 0 | 17463 | 51.8625 | E46 | S | [null] | 175 | Dorchester, MA | |
71 | 1 | 0 | male | 28.0 | 1 | 0 | PC 17604 | 82.1708 | [null] | C | [null] | [null] | New York, NY | |
72 | 1 | 0 | male | 65.0 | 0 | 0 | 13509 | 26.55 | E38 | S | [null] | 249 | East Bridgewater, MA | |
73 | 1 | 0 | male | 44.0 | 2 | 0 | 19928 | 90.0 | C78 | Q | [null] | 230 | Fond du Lac, WI | |
74 | 1 | 0 | male | 55.0 | 0 | 0 | 113787 | 30.5 | C30 | S | [null] | [null] | Montreal, PQ | |
75 | 1 | 0 | male | 47.0 | 0 | 0 | 113796 | 42.4 | [null] | S | [null] | [null] | Washington, DC | |
76 | 1 | 0 | male | 37.0 | 0 | 1 | PC 17596 | 29.7 | C118 | C | [null] | [null] | Brooklyn, NY | |
77 | 1 | 0 | male | 58.0 | 0 | 2 | 35273 | 113.275 | D48 | C | [null] | 122 | Lexington, MA | |
78 | 1 | 0 | male | 64.0 | 0 | 0 | 693 | 26.0 | [null] | S | [null] | 263 | Isle of Wight, England | |
79 | 1 | 0 | male | 65.0 | 0 | 1 | 113509 | 61.9792 | B30 | C | [null] | 234 | Providence, RI | |
80 | 1 | 0 | male | 28.5 | 0 | 0 | PC 17562 | 27.7208 | D43 | C | [null] | 189 | ?Havana, Cuba | |
81 | 1 | 0 | male | [null] | 0 | 0 | 112052 | 0.0 | [null] | S | [null] | [null] | Belfast | |
82 | 1 | 0 | male | 45.5 | 0 | 0 | 113043 | 28.5 | C124 | S | [null] | 166 | Surbiton Hill, Surrey | |
83 | 1 | 0 | male | 23.0 | 0 | 0 | 12749 | 93.5 | B24 | S | [null] | [null] | Montreal, PQ | |
84 | 1 | 0 | male | 29.0 | 1 | 0 | 113776 | 66.6 | C2 | S | [null] | [null] | Isleworth, England | |
85 | 1 | 0 | male | 18.0 | 1 | 0 | PC 17758 | 108.9 | C65 | C | [null] | [null] | Madrid, Spain | |
86 | 1 | 0 | male | 47.0 | 0 | 0 | 110465 | 52.0 | C110 | S | [null] | 207 | Worcester, MA | |
87 | 1 | 0 | male | 38.0 | 0 | 0 | 19972 | 0.0 | [null] | S | [null] | [null] | Rotterdam, Netherlands | |
88 | 1 | 0 | male | 22.0 | 0 | 0 | PC 17760 | 135.6333 | [null] | C | [null] | 232 | [null] | |
89 | 1 | 0 | male | [null] | 0 | 0 | PC 17757 | 227.525 | [null] | C | [null] | [null] | [null] | |
90 | 1 | 0 | male | 31.0 | 0 | 0 | PC 17590 | 50.4958 | A24 | S | [null] | [null] | Trenton, NJ | |
91 | 1 | 0 | male | [null] | 0 | 0 | 113767 | 50.0 | A32 | S | [null] | [null] | Seattle, WA | |
92 | 1 | 0 | male | 36.0 | 0 | 0 | 13049 | 40.125 | A10 | C | [null] | [null] | Winnipeg, MB | |
93 | 1 | 0 | male | 55.0 | 1 | 0 | PC 17603 | 59.4 | [null] | C | [null] | [null] | New York, NY | |
94 | 1 | 0 | male | 33.0 | 0 | 0 | 113790 | 26.55 | [null] | S | [null] | 109 | London | |
95 | 1 | 0 | male | 61.0 | 1 | 3 | PC 17608 | 262.375 | B57 B59 B63 B66 | C | [null] | [null] | Haverford, PA / Cooperstown, NY | |
96 | 1 | 0 | male | 50.0 | 1 | 0 | 13507 | 55.9 | E44 | S | [null] | [null] | Duluth, MN | |
97 | 1 | 0 | male | 56.0 | 0 | 0 | 113792 | 26.55 | [null] | S | [null] | [null] | New York, NY | |
98 | 1 | 0 | male | 56.0 | 0 | 0 | 17764 | 30.6958 | A7 | C | [null] | [null] | St James, Long Island, NY | |
99 | 1 | 0 | male | 24.0 | 1 | 0 | 13695 | 60.0 | C31 | S | [null] | [null] | Huntington, WV | |
100 | 1 | 0 | male | [null] | 0 | 0 | 113056 | 26.0 | A19 | S | [null] | [null] | Streatham, Surrey |
Rows: 1-100 | Columns: 14
Feature Engineering, 'pandas'-style¶
You can create new features with in a 'pandas' style.
In [12]:
titanic["family_size"] = titanic["parch"] + titanic["sibsp"] + 1
titanic[["sibsp", "parch", "family_size"]]
Out[12]:
123 sibspInt | 123 parchInt | 123 family_sizeInt | |
1 | 1 | 2 | 4 |
2 | 1 | 2 | 4 |
3 | 1 | 2 | 4 |
4 | 0 | 0 | 1 |
5 | 0 | 0 | 1 |
6 | 1 | 0 | 2 |
7 | 0 | 0 | 1 |
8 | 0 | 1 | 2 |
9 | 0 | 0 | 1 |
10 | 0 | 0 | 1 |
11 | 0 | 0 | 1 |
12 | 0 | 0 | 1 |
13 | 0 | 0 | 1 |
14 | 0 | 0 | 1 |
15 | 0 | 0 | 1 |
16 | 0 | 0 | 1 |
17 | 0 | 0 | 1 |
18 | 0 | 0 | 1 |
19 | 0 | 0 | 1 |
20 | 0 | 0 | 1 |
21 | 0 | 0 | 1 |
22 | 1 | 0 | 2 |
23 | 1 | 0 | 2 |
24 | 0 | 0 | 1 |
25 | 1 | 0 | 2 |
26 | 0 | 0 | 1 |
27 | 0 | 0 | 1 |
28 | 1 | 1 | 3 |
29 | 0 | 0 | 1 |
30 | 1 | 1 | 3 |
31 | 1 | 0 | 2 |
32 | 1 | 0 | 2 |
33 | 1 | 0 | 2 |
34 | 0 | 0 | 1 |
35 | 0 | 0 | 1 |
36 | 0 | 0 | 1 |
37 | 0 | 0 | 1 |
38 | 3 | 2 | 6 |
39 | 1 | 4 | 6 |
40 | 0 | 0 | 1 |
41 | 0 | 0 | 1 |
42 | 1 | 0 | 2 |
43 | 0 | 0 | 1 |
44 | 0 | 0 | 1 |
45 | 0 | 0 | 1 |
46 | 0 | 1 | 2 |
47 | 0 | 0 | 1 |
48 | 0 | 0 | 1 |
49 | 1 | 0 | 2 |
50 | 0 | 0 | 1 |
51 | 1 | 1 | 3 |
52 | 0 | 0 | 1 |
53 | 0 | 0 | 1 |
54 | 0 | 0 | 1 |
55 | 1 | 0 | 2 |
56 | 0 | 0 | 1 |
57 | 0 | 0 | 1 |
58 | 0 | 0 | 1 |
59 | 0 | 0 | 1 |
60 | 0 | 0 | 1 |
61 | 0 | 0 | 1 |
62 | 1 | 0 | 2 |
63 | 0 | 0 | 1 |
64 | 0 | 0 | 1 |
65 | 0 | 0 | 1 |
66 | 0 | 0 | 1 |
67 | 0 | 0 | 1 |
68 | 1 | 0 | 2 |
69 | 0 | 0 | 1 |
70 | 0 | 0 | 1 |
71 | 1 | 0 | 2 |
72 | 0 | 0 | 1 |
73 | 2 | 0 | 3 |
74 | 0 | 0 | 1 |
75 | 0 | 0 | 1 |
76 | 0 | 1 | 2 |
77 | 0 | 2 | 3 |
78 | 0 | 0 | 1 |
79 | 0 | 1 | 2 |
80 | 0 | 0 | 1 |
81 | 0 | 0 | 1 |
82 | 0 | 0 | 1 |
83 | 0 | 0 | 1 |
84 | 1 | 0 | 2 |
85 | 1 | 0 | 2 |
86 | 0 | 0 | 1 |
87 | 0 | 0 | 1 |
88 | 0 | 0 | 1 |
89 | 0 | 0 | 1 |
90 | 0 | 0 | 1 |
91 | 0 | 0 | 1 |
92 | 0 | 0 | 1 |
93 | 1 | 0 | 2 |
94 | 0 | 0 | 1 |
95 | 1 | 3 | 5 |
96 | 1 | 0 | 2 |
97 | 0 | 0 | 1 |
98 | 0 | 0 | 1 |
99 | 1 | 0 | 2 |
100 | 0 | 0 | 1 |
Rows: 1-100 | Columns: 3
You can also create features from various mathematical functions.
In [3]:
import verticapy.stats as st
titanic["ln_fare"] = st.ln(titanic["fare"])
titanic[["fare", "ln_fare"]]
Out[3]:
123 fareNumeric(10,5) | 123 ln_fareFloat | |
1 | 151.55 | 5.02091560350381 |
2 | 151.55 | 5.02091560350381 |
3 | 151.55 | 5.02091560350381 |
4 | 0.0 | -inf |
5 | 49.5042 | 3.90205751446006 |
6 | 227.525 | 5.42726012246342 |
7 | 25.925 | 3.25520775411559 |
8 | 247.5208 | 5.51149461888159 |
9 | 75.2417 | 4.32070559854228 |
10 | 26.0 | 3.25809653802148 |
11 | 35.5 | 3.56953269648137 |
12 | 26.55 | 3.27902974768795 |
13 | 30.5 | 3.41772668361337 |
14 | 50.4958 | 3.92189016450581 |
15 | 39.6 | 3.67882911826043 |
16 | 26.55 | 3.27902974768795 |
17 | 31.0 | 3.43398720448515 |
18 | 5.0 | 1.6094379124341 |
19 | 47.1 | 3.85227300102237 |
20 | 47.1 | 3.85227300102237 |
21 | 26.0 | 3.25809653802148 |
22 | 78.85 | 4.36754731340905 |
23 | 61.175 | 4.11373860932874 |
24 | 0.0 | -inf |
25 | 136.7792 | 4.91836794684454 |
26 | 52.0 | 3.95124371858143 |
27 | 25.5875 | 3.24210395098741 |
28 | 83.1583 | 4.42074602026042 |
29 | 26.55 | 3.27902974768795 |
30 | 71.0 | 4.26267987704132 |
31 | 71.2833 | 4.26666207838721 |
32 | 52.0 | 3.95124371858143 |
33 | 106.425 | 4.66744051171422 |
34 | 29.7 | 3.39114704580865 |
35 | 31.6792 | 3.45566031410212 |
36 | 221.7792 | 5.40168229234028 |
37 | 27.75 | 3.32323584019244 |
38 | 263.0 | 5.57215403217776 |
39 | 263.0 | 5.57215403217776 |
40 | 26.55 | 3.27902974768795 |
41 | 0.0 | -inf |
42 | 53.1 | 3.97217692824789 |
43 | 38.5 | 3.65065824129374 |
44 | 79.2 | 4.37197629882038 |
45 | 34.6542 | 3.54541893041153 |
46 | 153.4625 | 5.03345623750696 |
47 | 79.2 | 4.37197629882038 |
48 | 42.4 | 3.74714836223791 |
49 | 83.475 | 4.42454718582972 |
50 | 0.0 | -inf |
51 | 93.5 | 4.53796143629464 |
52 | 42.5 | 3.74950407593037 |
53 | 51.8625 | 3.94859598565899 |
54 | 50.0 | 3.91202300542815 |
55 | 52.0 | 3.95124371858143 |
56 | 30.6958 | 3.42412583741652 |
57 | 28.7125 | 3.35733256801522 |
58 | 26.0 | 3.25809653802148 |
59 | 26.0 | 3.25809653802148 |
60 | 211.5 | 5.35422499848633 |
61 | 29.7 | 3.39114704580865 |
62 | 51.8625 | 3.94859598565899 |
63 | 26.55 | 3.27902974768795 |
64 | 27.7208 | 3.32218303393412 |
65 | 30.0 | 3.40119738166216 |
66 | 45.5 | 3.8177123259569 |
67 | 26.0 | 3.25809653802148 |
68 | 53.1 | 3.97217692824789 |
69 | 75.2417 | 4.32070559854228 |
70 | 51.8625 | 3.94859598565899 |
71 | 82.1708 | 4.40880000780905 |
72 | 26.55 | 3.27902974768795 |
73 | 90.0 | 4.49980967033027 |
74 | 30.5 | 3.41772668361337 |
75 | 42.4 | 3.74714836223791 |
76 | 29.7 | 3.39114704580865 |
77 | 113.275 | 4.7298184905532 |
78 | 26.0 | 3.25809653802148 |
79 | 61.9792 | 4.12679884488682 |
80 | 27.7208 | 3.32218303393412 |
81 | 0.0 | -inf |
82 | 28.5 | 3.3499040872746 |
83 | 93.5 | 4.53796143629464 |
84 | 66.6 | 4.19870457754634 |
85 | 108.9 | 4.69043002993891 |
86 | 52.0 | 3.95124371858143 |
87 | 0.0 | -inf |
88 | 135.6333 | 4.90995492057888 |
89 | 227.525 | 5.42726012246342 |
90 | 50.4958 | 3.92189016450581 |
91 | 50.0 | 3.91202300542815 |
92 | 40.125 | 3.69199958145018 |
93 | 59.4 | 4.0842942263686 |
94 | 26.55 | 3.27902974768795 |
95 | 262.375 | 5.5697747781408 |
96 | 55.9 | 4.02356438016105 |
97 | 26.55 | 3.27902974768795 |
98 | 30.6958 | 3.42412583741652 |
99 | 60.0 | 4.0943445622221 |
100 | 26.0 | 3.25809653802148 |
Rows: 1-100 | Columns: 2
In [4]:
titanic["x"] = 1 - st.exp(-titanic["fare"])
titanic[["fare", "x"]]
Out[4]:
123 fareNumeric(10,5) | 123 xFloat | |
1 | 151.55 | 1.0 |
2 | 151.55 | 1.0 |
3 | 151.55 | 1.0 |
4 | 0.0 | 0.0 |
5 | 49.5042 | 1.0 |
6 | 227.525 | 1.0 |
7 | 25.925 | 0.999999999994493 |
8 | 247.5208 | 1.0 |
9 | 75.2417 | 1.0 |
10 | 26.0 | 0.999999999994891 |
11 | 35.5 | 1.0 |
12 | 26.55 | 0.999999999997052 |
13 | 30.5 | 0.999999999999943 |
14 | 50.4958 | 1.0 |
15 | 39.6 | 1.0 |
16 | 26.55 | 0.999999999997052 |
17 | 31.0 | 0.999999999999966 |
18 | 5.0 | 0.993262053000915 |
19 | 47.1 | 1.0 |
20 | 47.1 | 1.0 |
21 | 26.0 | 0.999999999994891 |
22 | 78.85 | 1.0 |
23 | 61.175 | 1.0 |
24 | 0.0 | 0.0 |
25 | 136.7792 | 1.0 |
26 | 52.0 | 1.0 |
27 | 25.5875 | 0.999999999992282 |
28 | 83.1583 | 1.0 |
29 | 26.55 | 0.999999999997052 |
30 | 71.0 | 1.0 |
31 | 71.2833 | 1.0 |
32 | 52.0 | 1.0 |
33 | 106.425 | 1.0 |
34 | 29.7 | 0.999999999999874 |
35 | 31.6792 | 0.999999999999983 |
36 | 221.7792 | 1.0 |
37 | 27.75 | 0.999999999999112 |
38 | 263.0 | 1.0 |
39 | 263.0 | 1.0 |
40 | 26.55 | 0.999999999997052 |
41 | 0.0 | 0.0 |
42 | 53.1 | 1.0 |
43 | 38.5 | 1.0 |
44 | 79.2 | 1.0 |
45 | 34.6542 | 0.999999999999999 |
46 | 153.4625 | 1.0 |
47 | 79.2 | 1.0 |
48 | 42.4 | 1.0 |
49 | 83.475 | 1.0 |
50 | 0.0 | 0.0 |
51 | 93.5 | 1.0 |
52 | 42.5 | 1.0 |
53 | 51.8625 | 1.0 |
54 | 50.0 | 1.0 |
55 | 52.0 | 1.0 |
56 | 30.6958 | 0.999999999999953 |
57 | 28.7125 | 0.999999999999661 |
58 | 26.0 | 0.999999999994891 |
59 | 26.0 | 0.999999999994891 |
60 | 211.5 | 1.0 |
61 | 29.7 | 0.999999999999874 |
62 | 51.8625 | 1.0 |
63 | 26.55 | 0.999999999997052 |
64 | 27.7208 | 0.999999999999086 |
65 | 30.0 | 0.999999999999906 |
66 | 45.5 | 1.0 |
67 | 26.0 | 0.999999999994891 |
68 | 53.1 | 1.0 |
69 | 75.2417 | 1.0 |
70 | 51.8625 | 1.0 |
71 | 82.1708 | 1.0 |
72 | 26.55 | 0.999999999997052 |
73 | 90.0 | 1.0 |
74 | 30.5 | 0.999999999999943 |
75 | 42.4 | 1.0 |
76 | 29.7 | 0.999999999999874 |
77 | 113.275 | 1.0 |
78 | 26.0 | 0.999999999994891 |
79 | 61.9792 | 1.0 |
80 | 27.7208 | 0.999999999999086 |
81 | 0.0 | 0.0 |
82 | 28.5 | 0.999999999999581 |
83 | 93.5 | 1.0 |
84 | 66.6 | 1.0 |
85 | 108.9 | 1.0 |
86 | 52.0 | 1.0 |
87 | 0.0 | 0.0 |
88 | 135.6333 | 1.0 |
89 | 227.525 | 1.0 |
90 | 50.4958 | 1.0 |
91 | 50.0 | 1.0 |
92 | 40.125 | 1.0 |
93 | 59.4 | 1.0 |
94 | 26.55 | 0.999999999997052 |
95 | 262.375 | 1.0 |
96 | 55.9 | 1.0 |
97 | 26.55 | 0.999999999997052 |
98 | 30.6958 | 0.999999999999953 |
99 | 60.0 | 1.0 |
100 | 26.0 | 0.999999999994891 |
Rows: 1-100 | Columns: 2
Conditional Operators¶
You can now filter your data with conditional operators like and ('&'), or ('|'), equals ('=='), not equals (!=), and more!
Equal Operator (==)
In [13]:
# Identifies the passengers who came alone
single_family = titanic[titanic["family_size"] == 1]
single_family
Out[13]:
123 pclassInt | 123 survivedInt | Abc Varchar(164) | Abc sexVarchar(20) | 123 ageNumeric(6,3) | 123 sibspInt | 123 parchInt | Abc ticketVarchar(36) | 123 fareNumeric(10,5) | Abc cabinVarchar(30) | Abc embarkedVarchar(20) | Abc boatVarchar(100) | 123 bodyInt | Abc Varchar(100) | 123 family_sizeInt | |
1 | 1 | 0 | male | 39.0 | 0 | 0 | 112050 | 0.0 | A36 | S | [null] | [null] | 1 | ||
2 | 1 | 0 | male | 71.0 | 0 | 0 | PC 17609 | 49.5042 | [null] | C | [null] | 22 | 1 | ||
3 | 1 | 0 | male | [null] | 0 | 0 | PC 17318 | 25.925 | [null] | S | [null] | [null] | 1 | ||
4 | 1 | 0 | male | 36.0 | 0 | 0 | 13050 | 75.2417 | C6 | C | A | [null] | 1 | ||
5 | 1 | 0 | male | 25.0 | 0 | 0 | 13905 | 26.0 | [null] | C | [null] | 148 | 1 | ||
6 | 1 | 0 | male | 45.0 | 0 | 0 | 113784 | 35.5 | T | S | [null] | [null] | 1 | ||
7 | 1 | 0 | male | 42.0 | 0 | 0 | 110489 | 26.55 | D22 | S | [null] | [null] | 1 | ||
8 | 1 | 0 | male | 41.0 | 0 | 0 | 113054 | 30.5 | A21 | S | [null] | [null] | 1 | ||
9 | 1 | 0 | male | 48.0 | 0 | 0 | PC 17591 | 50.4958 | B10 | C | [null] | 208 | 1 | ||
10 | 1 | 0 | male | [null] | 0 | 0 | 112379 | 39.6 | [null] | C | [null] | [null] | 1 | ||
11 | 1 | 0 | male | 45.0 | 0 | 0 | 113050 | 26.55 | B38 | S | [null] | [null] | 1 | ||
12 | 1 | 0 | male | [null] | 0 | 0 | 113798 | 31.0 | [null] | S | [null] | [null] | 1 | ||
13 | 1 | 0 | male | 33.0 | 0 | 0 | 695 | 5.0 | B51 B53 B55 | S | [null] | [null] | 1 | ||
14 | 1 | 0 | male | 28.0 | 0 | 0 | 113059 | 47.1 | [null] | S | [null] | [null] | 1 | ||
15 | 1 | 0 | male | 17.0 | 0 | 0 | 113059 | 47.1 | [null] | S | [null] | [null] | 1 | ||
16 | 1 | 0 | male | 49.0 | 0 | 0 | 19924 | 26.0 | [null] | S | [null] | [null] | 1 | ||
17 | 1 | 0 | male | [null] | 0 | 0 | 112051 | 0.0 |