vDataFrame.isin

In [ ]:
vDataFrame.isin(val: dict)

Looks if some specific records are in the vDataFrame and it returns the new vDataFrame of the search.

Parameters

Name Type Optional Description
val
dict
Dictionary of the different records. Each key of the dictionary must represent a vcolumn. For example, to check if Badr Ouali and Fouad Teban are in the vDataFrame. You can write the following dict: {"name": ["Teban", "Ouali"], "surname": ["Fouad", "Badr"]}

Returns

vDataFrame : The vDataFrame of the search.

Example

In [1]:
from verticapy.datasets import load_amazon
amazon = load_amazon()
display(amazon)
📅
date
Date
Abc
state
Varchar(32)
123
number
Int
11998-01-01ACRE0
21998-01-01ALAGOAS0
31998-01-01AMAPÁ0
41998-01-01AMAZONAS0
51998-01-01BAHIA0
61998-01-01CEARÁ0
71998-01-01DISTRITO FEDERAL0
81998-01-01ESPÍRITO SANTO0
91998-01-01GOIÁS0
101998-01-01MARANHÃO0
111998-01-01MATO GROSSO0
121998-01-01MATO GROSSO DO SUL0
131998-01-01MINAS GERAIS0
141998-01-01PARANÁ0
151998-01-01PARAÍBA0
161998-01-01PARÁ0
171998-01-01PERNAMBUCO0
181998-01-01PIAUÍ0
191998-01-01RIO DE JANEIRO0
201998-01-01RIO GRANDE DO NORTE0
211998-01-01RIO GRANDE DO SUL0
221998-01-01RONDÔNIA0
231998-01-01RORAIMA0
241998-01-01SANTA CATARINA0
251998-01-01SERGIPE0
261998-01-01SÃO PAULO0
271998-01-01TOCANTINS0
281998-02-01ACRE0
291998-02-01ALAGOAS0
301998-02-01AMAPÁ0
311998-02-01AMAZONAS0
321998-02-01BAHIA0
331998-02-01CEARÁ0
341998-02-01DISTRITO FEDERAL0
351998-02-01ESPÍRITO SANTO0
361998-02-01GOIÁS0
371998-02-01MARANHÃO0
381998-02-01MATO GROSSO0
391998-02-01MATO GROSSO DO SUL0
401998-02-01MINAS GERAIS0
411998-02-01PARANÁ0
421998-02-01PARAÍBA0
431998-02-01PARÁ0
441998-02-01PERNAMBUCO0
451998-02-01PIAUÍ0
461998-02-01RIO DE JANEIRO0
471998-02-01RIO GRANDE DO NORTE0
481998-02-01RIO GRANDE DO SUL0
491998-02-01RONDÔNIA0
501998-02-01RORAIMA0
511998-02-01SANTA CATARINA0
521998-02-01SERGIPE0
531998-02-01SÃO PAULO0
541998-02-01TOCANTINS0
551998-03-01ACRE0
561998-03-01ALAGOAS0
571998-03-01AMAPÁ0
581998-03-01AMAZONAS0
591998-03-01BAHIA0
601998-03-01CEARÁ0
611998-03-01DISTRITO FEDERAL0
621998-03-01ESPÍRITO SANTO0
631998-03-01GOIÁS0
641998-03-01MARANHÃO0
651998-03-01MATO GROSSO0
661998-03-01MATO GROSSO DO SUL0
671998-03-01MINAS GERAIS0
681998-03-01PARANÁ0
691998-03-01PARAÍBA0
701998-03-01PARÁ0
711998-03-01PERNAMBUCO0
721998-03-01PIAUÍ0
731998-03-01RIO DE JANEIRO0
741998-03-01RIO GRANDE DO NORTE0
751998-03-01RIO GRANDE DO SUL0
761998-03-01RONDÔNIA0
771998-03-01RORAIMA0
781998-03-01SANTA CATARINA0
791998-03-01SERGIPE0
801998-03-01SÃO PAULO0
811998-03-01TOCANTINS0
821998-04-01ACRE0
831998-04-01ALAGOAS0
841998-04-01AMAPÁ0
851998-04-01AMAZONAS0
861998-04-01BAHIA0
871998-04-01CEARÁ0
881998-04-01DISTRITO FEDERAL0
891998-04-01ESPÍRITO SANTO0
901998-04-01GOIÁS0
911998-04-01MARANHÃO0
921998-04-01MATO GROSSO0
931998-04-01MATO GROSSO DO SUL0
941998-04-01MINAS GERAIS0
951998-04-01PARANÁ0
961998-04-01PARAÍBA0
971998-04-01PARÁ0
981998-04-01PERNAMBUCO0
991998-04-01PIAUÍ0
1001998-04-01RIO DE JANEIRO0
Rows: 1-100 | Columns: 3
In [3]:
amazon.isin({"state": ["RIO DE JANEIRO", "PARÁ"], 
             "number": [0, 0]})
Out[3]:
📅
date
Date
Abc
state
Varchar(32)
123
number
Int
11998-01-01PARÁ0
21998-01-01RIO DE JANEIRO0
31998-02-01PARÁ0
41998-02-01RIO DE JANEIRO0
51998-03-01PARÁ0
61998-03-01RIO DE JANEIRO0
71998-04-01PARÁ0
81998-04-01RIO DE JANEIRO0
91998-05-01PARÁ0
101998-05-01RIO DE JANEIRO0
111999-01-01RIO DE JANEIRO0
121999-02-01RIO DE JANEIRO0
131999-03-01RIO DE JANEIRO0
141999-12-01RIO DE JANEIRO0
152000-01-01RIO DE JANEIRO0
162000-03-01RIO DE JANEIRO0
172000-12-01RIO DE JANEIRO0
182001-01-01RIO DE JANEIRO0
192001-03-01PARÁ0
202001-03-01RIO DE JANEIRO0
212001-04-01PARÁ0
222002-01-01RIO DE JANEIRO0
232003-01-01RIO DE JANEIRO0
242004-05-01RIO DE JANEIRO0
252006-05-01PARÁ0
262006-12-01RIO DE JANEIRO0
272007-01-01RIO DE JANEIRO0
282007-04-01PARÁ0
292007-12-01RIO DE JANEIRO0
302008-05-01PARÁ0
312008-05-01RIO DE JANEIRO0
322008-11-01RIO DE JANEIRO0
Rows: 1-32 | Columns: 3