vDataFrame.fillna

In [ ]:
vDataFrame.fillna(val: dict = {},
                  method: dict = {},
                  numeric_only: bool = False)

Fills the vcolumns missing elements using specific rules.

Parameters

Name Type Optional Description
val
dict
Dictionary of values. The dictionary must be similar to the following: {"column1": val1 ..., "columnk": valk}. Each key of the dictionary must be a vcolumn. The missing values of the input vcolumns will be replaced by the input value.
method
dict
Method to use to impute the missing values.
  • auto : Mean for the numerical and Mode for the categorical vcolumns.
  • mean : Average.
  • median : Median.
  • mode : Mode (most occurent element).
  • 0ifnull : 0 when the vcolumn is null, 1 otherwise.
More Methods are available on the vDataFrame[].fillna method.
numeric_only
bool
If parameters 'val' and 'method' are empty and 'numeric_only' is set to True then all the numerical vcolumns will be imputed by their average. If set to False, all the categorical vcolumns will be also imputed by their mode.

Returns

vDataFrame : self

Example

In [171]:
from verticapy.datasets import load_titanic
titanic = load_titanic()
display(titanic)
titanic.count()
123
fare
Numeric(10,5)
123
survived
Int
Abc
sex
Varchar(20)
Abc
boat
Varchar(100)
123
pclass
Int
123
age
Numeric(6,3)
Abc
ticket
Varchar(36)
Abc
Varchar(164)
Abc
embarked
Varchar(20)
Abc
cabin
Varchar(30)
123
body
Int
123
parch
Int
Abc
home.dest
Varchar(100)
123
sibsp
Int
1151.550000female[null]12.000113781SC22 C26[null]2Montreal, PQ / Chesterville, ON1
2151.550000male[null]130.000113781SC22 C261352Montreal, PQ / Chesterville, ON1
3151.550000female[null]125.000113781SC22 C26[null]2Montreal, PQ / Chesterville, ON1
40.000000male[null]139.000112050SA36[null]0Belfast, NI0
549.504200male[null]171.000PC 17609C[null]220Montevideo, Uruguay0
6227.525000male[null]147.000PC 17757CC62 C641240New York, NY1
725.925000male[null]1[null]PC 17318S[null][null]0New York, NY0
8247.520800male[null]124.000PC 17558CB58 B60[null]1Montreal, PQ0
975.241700maleA136.00013050CC6[null]0Winnipeg, MN0
1026.000000male[null]125.00013905C[null]1480San Francisco, CA0
1135.500000male[null]145.000113784ST[null]0Trenton, NJ0
1226.550000male[null]142.000110489SD22[null]0London / Winnipeg, MB0
1330.500000male[null]141.000113054SA21[null]0Pomeroy, WA0
1450.495800male[null]148.000PC 17591CB102080Omaha, NE0
1539.600000male[null]1[null]112379C[null][null]0Philadelphia, PA0
1626.550000male[null]145.000113050SB38[null]0Washington, DC0
1731.000000male[null]1[null]113798S[null][null]0[null]0
185.000000male[null]133.000695SB51 B53 B55[null]0New York, NY0
1947.100000male[null]128.000113059S[null][null]0Montevideo, Uruguay0
2047.100000male[null]117.000113059S[null][null]0Montevideo, Uruguay0
2126.000000male[null]149.00019924S[null][null]0Ascot, Berkshire / Rochester, NY0
2278.850000male[null]136.00019877SC461720Little Onn Hall, Staffs1
2361.175000male[null]146.000W.E.P. 5734SE31[null]0Amenia, ND1
240.000000male[null]1[null]112051S[null][null]0Liverpool, England / Belfast0
25136.779200male[null]127.00013508CC89[null]0Los Angeles, CA1
2652.000000male[null]1[null]110465SA14[null]0Stoughton, MA0
2725.587500male[null]147.0005727SE58[null]0Victoria, BC0
2883.158300male[null]137.000PC 17756CE52[null]1Lakewood, NJ1
2926.550000male[null]1[null]113791S[null][null]0Roachdale, IN0
3071.000000male[null]170.000WE/P 5735SB222691Milwaukee, WI1
3171.283300male[null]139.000PC 17599CC85[null]0New York, NY1
3252.000000male[null]131.000F.C. 12750SB71[null]0Montreal, PQ1
33106.425000male[null]150.000PC 17761CC86620Deephaven, MN / Cedar Rapids, IA1
3429.700000male[null]139.000PC 17580CA181330Philadelphia, PA0
3531.679200female[null]136.000PC 17531CA29[null]0New York, NY0
36221.779200male[null]1[null]PC 17483SC95[null]0[null]0
3727.750000male[null]130.000113051CC111[null]0New York, NY0
38263.000000male[null]119.00019950SC23 C25 C27[null]2Winnipeg, MB3
39263.000000male[null]164.00019950SC23 C25 C27[null]4Winnipeg, MB1
4026.550000male[null]1[null]113778SD34[null]0Westcliff-on-Sea, Essex0
410.000000male[null]1[null]112058SB102[null]0[null]0
4253.100000male[null]137.000113803SC123[null]0Scituate, MA1
4338.500000male[null]147.000111320SE632750St Anne's-on-Sea, Lancashire0
4479.200000male[null]124.000PC 17593CB86[null]0[null]0
4534.654200male[null]171.000PC 17754CA5[null]0New York, NY0
46153.462500male[null]138.000PC 17582SC911471Winnipeg, MB0
4779.200000male[null]146.000PC 17593CB82 B84[null]0New York, NY0
4842.400000male[null]1[null]113796S[null][null]0[null]0
4983.475000male[null]145.00036973SC83[null]0New York, NY1
500.000000male[null]140.000112059SB941100[null]0
5193.500000male[null]155.00012749SB693071Montreal, PQ1
5242.500000male[null]142.000113038SB11[null]0London / Middlesex0
5351.862500male[null]1[null]17463SE46[null]0Brighton, MA0
5450.000000male[null]155.000680SC39[null]0London / Birmingham0
5552.000000male[null]142.000113789S[null]380New York, NY1
5630.695800male141[null]PC 17600C[null][null]0New York, NY0
5728.712500female[null]150.000PC 17595CC49[null]0Paris, France New York, NY0
5826.000000male[null]146.000694S[null]800Bennington, VT0
5926.000000male[null]150.000113044SE60[null]0London0
60211.500000male[null]132.500113503CC132450[null]0
6129.700000male[null]158.00011771CB372580Buffalo, NY0
6251.862500male[null]141.00017464SD21[null]0Southington / Noank, CT1
6326.550000male[null]1[null]113028SC124[null]0Portland, OR0
6427.720800male[null]1[null]PC 17612C[null][null]0Chicago, IL0
6530.000000male[null]129.000113501SD61260Springfield, MA0
6645.500000male[null]130.000113801S[null][null]0London / New York, NY0
6726.000000male[null]130.000110469SC106[null]0Brockton, MA0
6853.100000male[null]119.000113773SD30[null]0New York, NY1
6975.241700male[null]146.00013050CC62920Vancouver, BC0
7051.862500male[null]154.00017463SE461750Dorchester, MA0
7182.170800male[null]128.000PC 17604C[null][null]0New York, NY1
7226.550000male[null]165.00013509SE382490East Bridgewater, MA0
7390.000000male[null]144.00019928QC782300Fond du Lac, WI2
7430.500000male[null]155.000113787SC30[null]0Montreal, PQ0
7542.400000male[null]147.000113796S[null][null]0Washington, DC0
7629.700000male[null]137.000PC 17596CC118[null]1Brooklyn, NY0
77113.275000male[null]158.00035273CD481222Lexington, MA0
7826.000000male[null]164.000693S[null]2630Isle of Wight, England0
7961.979200male[null]165.000113509CB302341Providence, RI0
8027.720800male[null]128.500PC 17562CD431890?Havana, Cuba0
810.000000male[null]1[null]112052S[null][null]0Belfast0
8228.500000male[null]145.500113043SC1241660Surbiton Hill, Surrey0
8393.500000male[null]123.00012749SB24[null]0Montreal, PQ0
8466.600000male[null]129.000113776SC2[null]0Isleworth, England1
85108.900000male[null]118.000PC 17758CC65[null]0Madrid, Spain1
8652.000000male[null]147.000110465SC1102070Worcester, MA0
870.000000male[null]138.00019972S[null][null]0Rotterdam, Netherlands0
88135.633300male[null]122.000PC 17760C[null]2320[null]0
89227.525000male[null]1[null]PC 17757C[null][null]0[null]0
9050.495800male[null]131.000PC 17590SA24[null]0Trenton, NJ0
9150.000000male[null]1[null]113767SA32[null]0Seattle, WA0
9240.125000male[null]136.00013049CA10[null]0Winnipeg, MB0
9359.400000male[null]155.000PC 17603C[null][null]0New York, NY1
9426.550000male[null]133.000113790S[null]1090London0
95262.375000male[null]161.000PC 17608CB57 B59 B63 B66[null]3Haverford, PA / Cooperstown, NY1
9655.900000male[null]150.00013507SE44[null]0Duluth, MN1
9726.550000male[null]156.000113792S[null][null]0New York, NY0
9830.695800male[null]156.00017764CA7[null]0St James, Long Island, NY0
9960.000000male[null]124.00013695SC31[null]0Huntington, WV1
10026.000000male[null]1[null]113056SA19[null]0Streatham, Surrey0
Rows: 1-100 of 1234 | Columns: 14
countpercent
"survived"1234.0100.0
"sex"1234.0100.0
"pclass"1234.0100.0
"ticket"1234.0100.0
"name"1234.0100.0
"parch"1234.0100.0
"sibsp"1234.0100.0
"fare"1233.099.919
"embarked"1232.099.838
"age"997.080.794
"home.dest"706.057.212
"boat"439.035.575
"cabin"286.023.177
"body"118.09.562
Out[171]:

In [172]:
titanic.fillna(val = {"boat": "No boat"},
               method = {"age": "mean",
                         "embarked": "mode",
                         "fare": "median"})
123
fare
Float
100%
123
survived
Int
100%
Abc
sex
Varchar(20)
100%
Abc
boat
Varchar(100)
100%
123
pclass
Int
100%
123
age
Float
100%
Abc
ticket
Varchar(36)
100%
Abc
Varchar(164)
100%
Abc
embarked
Varchar(20)
100%
Abc
cabin
Varchar(30)
23%
123
body
Int
9%
123
parch
Int
100%
Abc
home.dest
Varchar(100)
57%
123
sibsp
Int
100%
1151.550000femaleNo boat12.0000000000000113781SC22 C26[null]2Montreal, PQ / Chesterville, ON1
2151.550000maleNo boat130.0000000000000113781SC22 C261352Montreal, PQ / Chesterville, ON1
3151.550000femaleNo boat125.0000000000000113781SC22 C26[null]2Montreal, PQ / Chesterville, ON1
40.000000maleNo boat139.0000000000000112050SA36[null]0Belfast, NI0
549.504200maleNo boat171.0000000000000PC 17609C[null]220Montevideo, Uruguay0
6227.525000maleNo boat147.0000000000000PC 17757CC62 C641240New York, NY1
725.925000maleNo boat130.1524573721163PC 17318S[null][null]0New York, NY0
8247.520800maleNo boat124.0000000000000PC 17558CB58 B60[null]1Montreal, PQ0
975.241700maleA136.000000000000013050CC6[null]0Winnipeg, MN0
1026.000000maleNo boat125.000000000000013905C[null]1480San Francisco, CA0
1135.500000maleNo boat145.0000000000000113784ST[null]0Trenton, NJ0
1226.550000maleNo boat142.0000000000000110489SD22[null]0London / Winnipeg, MB0
1330.500000maleNo boat141.0000000000000113054SA21[null]0Pomeroy, WA0
1450.495800maleNo boat148.0000000000000PC 17591CB102080Omaha, NE0
1539.600000maleNo boat130.1524573721163112379C[null][null]0Philadelphia, PA0
1626.550000maleNo boat145.0000000000000113050SB38[null]0Washington, DC0
1731.000000maleNo boat130.1524573721163113798S[null][null]0[null]0
185.000000maleNo boat133.0000000000000695SB51 B53 B55[null]0New York, NY0
1947.100000maleNo boat128.0000000000000113059S[null][null]0Montevideo, Uruguay0
2047.100000maleNo boat117.0000000000000113059S[null][null]0Montevideo, Uruguay0
2126.000000maleNo boat149.000000000000019924S[null][null]0Ascot, Berkshire / Rochester, NY0
2278.850000maleNo boat136.000000000000019877SC461720Little Onn Hall, Staffs1
2361.175000maleNo boat146.0000000000000W.E.P. 5734SE31[null]0Amenia, ND1
240.000000maleNo boat130.1524573721163112051S[null][null]0Liverpool, England / Belfast0
25136.779200maleNo boat127.000000000000013508CC89[null]0Los Angeles, CA1
2652.000000maleNo boat130.1524573721163110465SA14[null]0Stoughton, MA0
2725.587500maleNo boat147.00000000000005727SE58[null]0Victoria, BC0
2883.158300maleNo boat137.0000000000000PC 17756CE52[null]1Lakewood, NJ1
2926.550000maleNo boat130.1524573721163113791S[null][null]0Roachdale, IN0
3071.000000maleNo boat170.0000000000000WE/P 5735SB222691Milwaukee, WI1
3171.283300maleNo boat139.0000000000000PC 17599CC85[null]0New York, NY1
3252.000000maleNo boat131.0000000000000F.C. 12750SB71[null]0Montreal, PQ1
33106.425000maleNo boat150.0000000000000PC 17761CC86620Deephaven, MN / Cedar Rapids, IA1
3429.700000maleNo boat139.0000000000000PC 17580CA181330Philadelphia, PA0
3531.679200femaleNo boat136.0000000000000PC 17531CA29[null]0New York, NY0
36221.779200maleNo boat130.1524573721163PC 17483SC95[null]0[null]0
3727.750000maleNo boat130.0000000000000113051CC111[null]0New York, NY0
38263.000000maleNo boat119.000000000000019950SC23 C25 C27[null]2Winnipeg, MB3
39263.000000maleNo boat164.000000000000019950SC23 C25 C27[null]4Winnipeg, MB1
4026.550000maleNo boat130.1524573721163113778SD34[null]0Westcliff-on-Sea, Essex0
410.000000maleNo boat130.1524573721163112058SB102[null]0[null]0
4253.100000maleNo boat137.0000000000000113803SC123[null]0Scituate, MA1
4338.500000maleNo boat147.0000000000000111320SE632750St Anne's-on-Sea, Lancashire0
4479.200000maleNo boat124.0000000000000PC 17593CB86[null]0[null]0
4534.654200maleNo boat171.0000000000000PC 17754CA5[null]0New York, NY0
46153.462500maleNo boat138.0000000000000PC 17582SC911471Winnipeg, MB0
4779.200000maleNo boat146.0000000000000PC 17593CB82 B84[null]0New York, NY0
4842.400000maleNo boat130.1524573721163113796S[null][null]0[null]0
4983.475000maleNo boat145.000000000000036973SC83[null]0New York, NY1
500.000000maleNo boat140.0000000000000112059SB941100[null]0
5193.500000maleNo boat155.000000000000012749SB693071Montreal, PQ1
5242.500000maleNo boat142.0000000000000113038SB11[null]0London / Middlesex0
5351.862500maleNo boat130.152457372116317463SE46[null]0Brighton, MA0
5450.000000maleNo boat155.0000000000000680SC39[null]0London / Birmingham0
5552.000000maleNo boat142.0000000000000113789S[null]380New York, NY1
5630.695800male14130.1524573721163PC 17600C[null][null]0New York, NY0
5728.712500femaleNo boat150.0000000000000PC 17595CC49[null]0Paris, France New York, NY0
5826.000000maleNo boat146.0000000000000694S[null]800Bennington, VT0
5926.000000maleNo boat150.0000000000000113044SE60[null]0London0
60211.500000maleNo boat132.5000000000000113503CC132450[null]0
6129.700000maleNo boat158.000000000000011771CB372580Buffalo, NY0
6251.862500maleNo boat141.000000000000017464SD21[null]0Southington / Noank, CT1
6326.550000maleNo boat130.1524573721163113028SC124[null]0Portland, OR0
6427.720800maleNo boat130.1524573721163PC 17612C[null][null]0Chicago, IL0
6530.000000maleNo boat129.0000000000000113501SD61260Springfield, MA0
6645.500000maleNo boat130.0000000000000113801S[null][null]0London / New York, NY0
6726.000000maleNo boat130.0000000000000110469SC106[null]0Brockton, MA0
6853.100000maleNo boat119.0000000000000113773SD30[null]0New York, NY1
6975.241700maleNo boat146.000000000000013050CC62920Vancouver, BC0
7051.862500maleNo boat154.000000000000017463SE461750Dorchester, MA0
7182.170800maleNo boat128.0000000000000PC 17604C[null][null]0New York, NY1
7226.550000maleNo boat165.000000000000013509SE382490East Bridgewater, MA0
7390.000000maleNo boat144.000000000000019928QC782300Fond du Lac, WI2
7430.500000maleNo boat155.0000000000000113787SC30[null]0Montreal, PQ0
7542.400000maleNo boat147.0000000000000113796S[null][null]0Washington, DC0
7629.700000maleNo boat137.0000000000000PC 17596CC118[null]1Brooklyn, NY0
77113.275000maleNo boat158.000000000000035273CD481222Lexington, MA0
7826.000000maleNo boat164.0000000000000693S[null]2630Isle of Wight, England0
7961.979200maleNo boat165.0000000000000113509CB302341Providence, RI0
8027.720800maleNo boat128.5000000000000PC 17562CD431890?Havana, Cuba0
810.000000maleNo boat130.1524573721163112052S[null][null]0Belfast0
8228.500000maleNo boat145.5000000000000113043SC1241660Surbiton Hill, Surrey0
8393.500000maleNo boat123.000000000000012749SB24[null]0Montreal, PQ0
8466.600000maleNo boat129.0000000000000113776SC2[null]0Isleworth, England1
85108.900000maleNo boat118.0000000000000PC 17758CC65[null]0Madrid, Spain1
8652.000000maleNo boat147.0000000000000110465SC1102070Worcester, MA0
870.000000maleNo boat138.000000000000019972S[null][null]0Rotterdam, Netherlands0
88135.633300maleNo boat122.0000000000000PC 17760C[null]2320[null]0
89227.525000maleNo boat130.1524573721163PC 17757C[null][null]0[null]0
9050.495800maleNo boat131.0000000000000PC 17590SA24[null]0Trenton, NJ0
9150.000000maleNo boat130.1524573721163113767SA32[null]0Seattle, WA0
9240.125000maleNo boat136.000000000000013049CA10[null]0Winnipeg, MB0
9359.400000maleNo boat155.0000000000000PC 17603C[null][null]0New York, NY1
9426.550000maleNo boat133.0000000000000113790S[null]1090London0
95262.375000maleNo boat161.0000000000000PC 17608CB57 B59 B63 B66[null]3Haverford, PA / Cooperstown, NY1
9655.900000maleNo boat150.000000000000013507SE44[null]0Duluth, MN1
9726.550000maleNo boat156.0000000000000113792S[null][null]0New York, NY0
9830.695800maleNo boat156.000000000000017764CA7[null]0St James, Long Island, NY0
9960.000000maleNo boat124.000000000000013695SC31[null]0Huntington, WV1
10026.000000maleNo boat130.1524573721163113056SA19[null]0Streatham, Surrey0
Out[172]:
Rows: 1-100 of 1234 | Columns: 14
In [173]:
titanic.count()