-
Home / Documentation / Learn / Examples / Regression

VerticaPy
Example: Methods in a Regression Model¶
In this example, we use the 'Winequality' dataset to demonstrate the methods available to regressor models.
from verticapy.datasets import load_winequality
winequality = load_winequality()
display(winequality)
123 fixed_acidityNumeric(6,3) | 123 volatile_acidityNumeric(7,4) | 123 citric_acidNumeric(6,3) | 123 residual_sugarNumeric(7,3) | 123 chloridesFloat | 123 free_sulfur_dioxideNumeric(7,2) | 123 total_sulfur_dioxideNumeric(7,2) | 123 densityFloat | 123 pHNumeric(6,3) | 123 sulphatesNumeric(6,3) | 123 alcoholFloat | 123 qualityInt | 123 goodInt | Abc colorVarchar(20) | |
1 | 3.800 | 0.3100 | 0.020 | 11.100 | 0.036 | 20.00 | 114.00 | 0.99248 | 3.750 | 0.440 | 12.4 | 6 | 0 | white |
2 | 3.900 | 0.2250 | 0.400 | 4.200 | 0.03 | 29.00 | 118.00 | 0.989 | 3.570 | 0.360 | 12.8 | 8 | 1 | white |
3 | 4.200 | 0.1700 | 0.360 | 1.800 | 0.029 | 93.00 | 161.00 | 0.98999 | 3.650 | 0.890 | 12.0 | 7 | 1 | white |
4 | 4.200 | 0.2150 | 0.230 | 5.100 | 0.041 | 64.00 | 157.00 | 0.99688 | 3.420 | 0.440 | 8.0 | 3 | 0 | white |
5 | 4.400 | 0.3200 | 0.390 | 4.300 | 0.03 | 31.00 | 127.00 | 0.98904 | 3.460 | 0.360 | 12.8 | 8 | 1 | white |
6 | 4.400 | 0.4600 | 0.100 | 2.800 | 0.024 | 31.00 | 111.00 | 0.98816 | 3.480 | 0.340 | 13.1 | 6 | 0 | white |
7 | 4.400 | 0.5400 | 0.090 | 5.100 | 0.038 | 52.00 | 97.00 | 0.99022 | 3.410 | 0.400 | 12.2 | 7 | 1 | white |
8 | 4.500 | 0.1900 | 0.210 | 0.950 | 0.033 | 89.00 | 159.00 | 0.99332 | 3.340 | 0.420 | 8.0 | 5 | 0 | white |
9 | 4.600 | 0.4450 | 0.000 | 1.400 | 0.053 | 11.00 | 178.00 | 0.99426 | 3.790 | 0.550 | 10.2 | 5 | 0 | white |
10 | 4.600 | 0.5200 | 0.150 | 2.100 | 0.054 | 8.00 | 65.00 | 0.9934 | 3.900 | 0.560 | 13.1 | 4 | 0 | red |
11 | 4.700 | 0.1450 | 0.290 | 1.000 | 0.042 | 35.00 | 90.00 | 0.9908 | 3.760 | 0.490 | 11.3 | 6 | 0 | white |
12 | 4.700 | 0.3350 | 0.140 | 1.300 | 0.036 | 69.00 | 168.00 | 0.99212 | 3.470 | 0.460 | 10.5 | 5 | 0 | white |
13 | 4.700 | 0.4550 | 0.180 | 1.900 | 0.036 | 33.00 | 106.00 | 0.98746 | 3.210 | 0.830 | 14.0 | 7 | 1 | white |
14 | 4.700 | 0.6000 | 0.170 | 2.300 | 0.058 | 17.00 | 106.00 | 0.9932 | 3.850 | 0.600 | 12.9 | 6 | 0 | red |
15 | 4.700 | 0.6700 | 0.090 | 1.000 | 0.02 | 5.00 | 9.00 | 0.98722 | 3.300 | 0.340 | 13.6 | 5 | 0 | white |
16 | 4.700 | 0.7850 | 0.000 | 3.400 | 0.036 | 23.00 | 134.00 | 0.98981 | 3.530 | 0.920 | 13.8 | 6 | 0 | white |
17 | 4.800 | 0.1300 | 0.320 | 1.200 | 0.042 | 40.00 | 98.00 | 0.9898 | 3.420 | 0.640 | 11.8 | 7 | 1 | white |
18 | 4.800 | 0.1700 | 0.280 | 2.900 | 0.03 | 22.00 | 111.00 | 0.9902 | 3.380 | 0.340 | 11.3 | 7 | 1 | white |
19 | 4.800 | 0.2100 | 0.210 | 10.200 | 0.037 | 17.00 | 112.00 | 0.99324 | 3.660 | 0.480 | 12.2 | 7 | 1 | white |
20 | 4.800 | 0.2250 | 0.380 | 1.200 | 0.074 | 47.00 | 130.00 | 0.99132 | 3.310 | 0.400 | 10.3 | 6 | 0 | white |
21 | 4.800 | 0.2600 | 0.230 | 10.600 | 0.034 | 23.00 | 111.00 | 0.99274 | 3.460 | 0.280 | 11.5 | 7 | 1 | white |
22 | 4.800 | 0.2900 | 0.230 | 1.100 | 0.044 | 38.00 | 180.00 | 0.98924 | 3.280 | 0.340 | 11.9 | 6 | 0 | white |
23 | 4.800 | 0.3300 | 0.000 | 6.500 | 0.028 | 34.00 | 163.00 | 0.9937 | 3.350 | 0.610 | 9.9 | 5 | 0 | white |
24 | 4.800 | 0.3400 | 0.000 | 6.500 | 0.028 | 33.00 | 163.00 | 0.9939 | 3.360 | 0.610 | 9.9 | 6 | 0 | white |
25 | 4.800 | 0.6500 | 0.120 | 1.100 | 0.013 | 4.00 | 10.00 | 0.99246 | 3.320 | 0.360 | 13.5 | 4 | 0 | white |
26 | 4.900 | 0.2350 | 0.270 | 11.750 | 0.03 | 34.00 | 118.00 | 0.9954 | 3.070 | 0.500 | 9.4 | 6 | 0 | white |
27 | 4.900 | 0.3300 | 0.310 | 1.200 | 0.016 | 39.00 | 150.00 | 0.98713 | 3.330 | 0.590 | 14.0 | 8 | 1 | white |
28 | 4.900 | 0.3350 | 0.140 | 1.300 | 0.036 | 69.00 | 168.00 | 0.99212 | 3.470 | 0.460 | 10.4666666666667 | 5 | 0 | white |
29 | 4.900 | 0.3350 | 0.140 | 1.300 | 0.036 | 69.00 | 168.00 | 0.99212 | 3.470 | 0.460 | 10.4666666666667 | 5 | 0 | white |
30 | 4.900 | 0.3450 | 0.340 | 1.000 | 0.068 | 32.00 | 143.00 | 0.99138 | 3.240 | 0.400 | 10.1 | 5 | 0 | white |
31 | 4.900 | 0.3450 | 0.340 | 1.000 | 0.068 | 32.00 | 143.00 | 0.99138 | 3.240 | 0.400 | 10.1 | 5 | 0 | white |
32 | 4.900 | 0.4200 | 0.000 | 2.100 | 0.048 | 16.00 | 42.00 | 0.99154 | 3.710 | 0.740 | 14.0 | 7 | 1 | red |
33 | 4.900 | 0.4700 | 0.170 | 1.900 | 0.035 | 60.00 | 148.00 | 0.98964 | 3.270 | 0.350 | 11.5 | 6 | 0 | white |
34 | 5.000 | 0.1700 | 0.560 | 1.500 | 0.026 | 24.00 | 115.00 | 0.9906 | 3.480 | 0.390 | 10.8 | 7 | 1 | white |
35 | 5.000 | 0.2000 | 0.400 | 1.900 | 0.015 | 20.00 | 98.00 | 0.9897 | 3.370 | 0.550 | 12.05 | 6 | 0 | white |
36 | 5.000 | 0.2350 | 0.270 | 11.750 | 0.03 | 34.00 | 118.00 | 0.9954 | 3.070 | 0.500 | 9.4 | 6 | 0 | white |
37 | 5.000 | 0.2400 | 0.190 | 5.000 | 0.043 | 17.00 | 101.00 | 0.99438 | 3.670 | 0.570 | 10.0 | 5 | 0 | white |
38 | 5.000 | 0.2400 | 0.210 | 2.200 | 0.039 | 31.00 | 100.00 | 0.99098 | 3.690 | 0.620 | 11.7 | 6 | 0 | white |
39 | 5.000 | 0.2400 | 0.340 | 1.100 | 0.034 | 49.00 | 158.00 | 0.98774 | 3.320 | 0.320 | 13.1 | 7 | 1 | white |
40 | 5.000 | 0.2550 | 0.220 | 2.700 | 0.043 | 46.00 | 153.00 | 0.99238 | 3.750 | 0.760 | 11.3 | 6 | 0 | white |
41 | 5.000 | 0.2700 | 0.320 | 4.500 | 0.032 | 58.00 | 178.00 | 0.98956 | 3.450 | 0.310 | 12.6 | 7 | 1 | white |
42 | 5.000 | 0.2700 | 0.320 | 4.500 | 0.032 | 58.00 | 178.00 | 0.98956 | 3.450 | 0.310 | 12.6 | 7 | 1 | white |
43 | 5.000 | 0.2700 | 0.400 | 1.200 | 0.076 | 42.00 | 124.00 | 0.99204 | 3.320 | 0.470 | 10.1 | 6 | 0 | white |
44 | 5.000 | 0.2900 | 0.540 | 5.700 | 0.035 | 54.00 | 155.00 | 0.98976 | 3.270 | 0.340 | 12.9 | 8 | 1 | white |
45 | 5.000 | 0.3000 | 0.330 | 3.700 | 0.03 | 54.00 | 173.00 | 0.9887 | 3.360 | 0.300 | 13.0 | 7 | 1 | white |
46 | 5.000 | 0.3100 | 0.000 | 6.400 | 0.046 | 43.00 | 166.00 | 0.994 | 3.300 | 0.630 | 9.9 | 6 | 0 | white |
47 | 5.000 | 0.3300 | 0.160 | 1.500 | 0.049 | 10.00 | 97.00 | 0.9917 | 3.480 | 0.440 | 10.7 | 6 | 0 | white |
48 | 5.000 | 0.3300 | 0.160 | 1.500 | 0.049 | 10.00 | 97.00 | 0.9917 | 3.480 | 0.440 | 10.7 | 6 | 0 | white |
49 | 5.000 | 0.3300 | 0.160 | 1.500 | 0.049 | 10.00 | 97.00 | 0.9917 | 3.480 | 0.440 | 10.7 | 6 | 0 | white |
50 | 5.000 | 0.3300 | 0.180 | 4.600 | 0.032 | 40.00 | 124.00 | 0.99114 | 3.180 | 0.400 | 11.0 | 6 | 0 | white |
51 | 5.000 | 0.3300 | 0.230 | 11.800 | 0.03 | 23.00 | 158.00 | 0.99322 | 3.410 | 0.640 | 11.8 | 6 | 0 | white |
52 | 5.000 | 0.3500 | 0.250 | 7.800 | 0.031 | 24.00 | 116.00 | 0.99241 | 3.390 | 0.400 | 11.3 | 6 | 0 | white |
53 | 5.000 | 0.3500 | 0.250 | 7.800 | 0.031 | 24.00 | 116.00 | 0.99241 | 3.390 | 0.400 | 11.3 | 6 | 0 | white |
54 | 5.000 | 0.3800 | 0.010 | 1.600 | 0.048 | 26.00 | 60.00 | 0.99084 | 3.700 | 0.750 | 14.0 | 6 | 0 | red |
55 | 5.000 | 0.4000 | 0.500 | 4.300 | 0.046 | 29.00 | 80.00 | 0.9902 | 3.490 | 0.660 | 13.6 | 6 | 0 | red |
56 | 5.000 | 0.4200 | 0.240 | 2.000 | 0.06 | 19.00 | 50.00 | 0.9917 | 3.720 | 0.740 | 14.0 | 8 | 1 | red |
57 | 5.000 | 0.4400 | 0.040 | 18.600 | 0.039 | 38.00 | 128.00 | 0.9985 | 3.370 | 0.570 | 10.2 | 6 | 0 | white |
58 | 5.000 | 0.4550 | 0.180 | 1.900 | 0.036 | 33.00 | 106.00 | 0.98746 | 3.210 | 0.830 | 14.0 | 7 | 1 | white |
59 | 5.000 | 0.5500 | 0.140 | 8.300 | 0.032 | 35.00 | 164.00 | 0.9918 | 3.530 | 0.510 | 12.5 | 8 | 1 | white |
60 | 5.000 | 0.6100 | 0.120 | 1.300 | 0.009 | 65.00 | 100.00 | 0.9874 | 3.260 | 0.370 | 13.5 | 5 | 0 | white |
61 | 5.000 | 0.7400 | 0.000 | 1.200 | 0.041 | 16.00 | 46.00 | 0.99258 | 4.010 | 0.590 | 12.5 | 6 | 0 | red |
62 | 5.000 | 1.0200 | 0.040 | 1.400 | 0.045 | 41.00 | 85.00 | 0.9938 | 3.750 | 0.480 | 10.5 | 4 | 0 | red |
63 | 5.000 | 1.0400 | 0.240 | 1.600 | 0.05 | 32.00 | 96.00 | 0.9934 | 3.740 | 0.620 | 11.5 | 5 | 0 | red |
64 | 5.100 | 0.1100 | 0.320 | 1.600 | 0.028 | 12.00 | 90.00 | 0.99008 | 3.570 | 0.520 | 12.2 | 6 | 0 | white |
65 | 5.100 | 0.1400 | 0.250 | 0.700 | 0.039 | 15.00 | 89.00 | 0.9919 | 3.220 | 0.430 | 9.2 | 6 | 0 | white |
66 | 5.100 | 0.1650 | 0.220 | 5.700 | 0.047 | 42.00 | 146.00 | 0.9934 | 3.180 | 0.550 | 9.9 | 6 | 0 | white |
67 | 5.100 | 0.2100 | 0.280 | 1.400 | 0.047 | 48.00 | 148.00 | 0.99168 | 3.500 | 0.490 | 10.4 | 5 | 0 | white |
68 | 5.100 | 0.2300 | 0.180 | 1.000 | 0.053 | 13.00 | 99.00 | 0.98956 | 3.220 | 0.390 | 11.5 | 5 | 0 | white |
69 | 5.100 | 0.2500 | 0.360 | 1.300 | 0.035 | 40.00 | 78.00 | 0.9891 | 3.230 | 0.640 | 12.1 | 7 | 1 | white |
70 | 5.100 | 0.2600 | 0.330 | 1.100 | 0.027 | 46.00 | 113.00 | 0.98946 | 3.350 | 0.430 | 11.4 | 7 | 1 | white |
71 | 5.100 | 0.2600 | 0.340 | 6.400 | 0.034 | 26.00 | 99.00 | 0.99449 | 3.230 | 0.410 | 9.2 | 6 | 0 | white |
72 | 5.100 | 0.2900 | 0.280 | 8.300 | 0.026 | 27.00 | 107.00 | 0.99308 | 3.360 | 0.370 | 11.0 | 6 | 0 | white |
73 | 5.100 | 0.2900 | 0.280 | 8.300 | 0.026 | 27.00 | 107.00 | 0.99308 | 3.360 | 0.370 | 11.0 | 6 | 0 | white |
74 | 5.100 | 0.3000 | 0.300 | 2.300 | 0.048 | 40.00 | 150.00 | 0.98944 | 3.290 | 0.460 | 12.2 | 6 | 0 | white |
75 | 5.100 | 0.3050 | 0.130 | 1.750 | 0.036 | 17.00 | 73.00 | 0.99 | 3.400 | 0.510 | 12.3333333333333 | 5 | 0 | white |
76 | 5.100 | 0.3100 | 0.300 | 0.900 | 0.037 | 28.00 | 152.00 | 0.992 | 3.540 | 0.560 | 10.1 | 6 | 0 | white |
77 | 5.100 | 0.3300 | 0.220 | 1.600 | 0.027 | 18.00 | 89.00 | 0.9893 | 3.510 | 0.380 | 12.5 | 7 | 1 | white |
78 | 5.100 | 0.3300 | 0.220 | 1.600 | 0.027 | 18.00 | 89.00 | 0.9893 | 3.510 | 0.380 | 12.5 | 7 | 1 | white |
79 | 5.100 | 0.3300 | 0.220 | 1.600 | 0.027 | 18.00 | 89.00 | 0.9893 | 3.510 | 0.380 | 12.5 | 7 | 1 | white |
80 | 5.100 | 0.3300 | 0.270 | 6.700 | 0.022 | 44.00 | 129.00 | 0.99221 | 3.360 | 0.390 | 11.0 | 7 | 1 | white |
81 | 5.100 | 0.3500 | 0.260 | 6.800 | 0.034 | 36.00 | 120.00 | 0.99188 | 3.380 | 0.400 | 11.5 | 6 | 0 | white |
82 | 5.100 | 0.3500 | 0.260 | 6.800 | 0.034 | 36.00 | 120.00 | 0.99188 | 3.380 | 0.400 | 11.5 | 6 | 0 | white |
83 | 5.100 | 0.3500 | 0.260 | 6.800 | 0.034 | 36.00 | 120.00 | 0.99188 | 3.380 | 0.400 | 11.5 | 6 | 0 | white |
84 | 5.100 | 0.3900 | 0.210 | 1.700 | 0.027 | 15.00 | 72.00 | 0.9894 | 3.500 | 0.450 | 12.5 | 6 | 0 | white |
85 | 5.100 | 0.4200 | 0.000 | 1.800 | 0.044 | 18.00 | 88.00 | 0.99157 | 3.680 | 0.730 | 13.6 | 7 | 1 | red |
86 | 5.100 | 0.4200 | 0.010 | 1.500 | 0.017 | 25.00 | 102.00 | 0.9894 | 3.380 | 0.360 | 12.3 | 7 | 1 | white |
87 | 5.100 | 0.4700 | 0.020 | 1.300 | 0.034 | 18.00 | 44.00 | 0.9921 | 3.900 | 0.620 | 12.8 | 6 | 0 | red |
88 | 5.100 | 0.5100 | 0.180 | 2.100 | 0.042 | 16.00 | 101.00 | 0.9924 | 3.460 | 0.870 | 12.9 | 7 | 1 | red |
89 | 5.100 | 0.5200 | 0.060 | 2.700 | 0.052 | 30.00 | 79.00 | 0.9932 | 3.320 | 0.430 | 9.3 | 5 | 0 | white |
90 | 5.100 | 0.5850 | 0.000 | 1.700 | 0.044 | 14.00 | 86.00 | 0.99264 | 3.560 | 0.940 | 12.9 | 7 | 1 | red |
91 | 5.200 | 0.1550 | 0.330 | 1.600 | 0.028 | 13.00 | 59.00 | 0.98975 | 3.300 | 0.840 | 11.9 | 8 | 1 | white |
92 | 5.200 | 0.1550 | 0.330 | 1.600 | 0.028 | 13.00 | 59.00 | 0.98975 | 3.300 | 0.840 | 11.9 | 8 | 1 | white |
93 | 5.200 | 0.1600 | 0.340 | 0.800 | 0.029 | 26.00 | 77.00 | 0.99155 | 3.250 | 0.510 | 10.1 | 6 | 0 | white |
94 | 5.200 | 0.1700 | 0.270 | 0.700 | 0.03 | 11.00 | 68.00 | 0.99218 | 3.300 | 0.410 | 9.8 | 5 | 0 | white |
95 | 5.200 | 0.1850 | 0.220 | 1.000 | 0.03 | 47.00 | 123.00 | 0.99218 | 3.550 | 0.440 | 10.15 | 6 | 0 | white |
96 | 5.200 | 0.2000 | 0.270 | 3.200 | 0.047 | 16.00 | 93.00 | 0.99235 | 3.440 | 0.530 | 10.1 | 7 | 1 | white |
97 | 5.200 | 0.2100 | 0.310 | 1.700 | 0.048 | 17.00 | 61.00 | 0.98953 | 3.240 | 0.370 | 12.0 | 7 | 1 | white |
98 | 5.200 | 0.2200 | 0.460 | 6.200 | 0.066 | 41.00 | 187.00 | 0.99362 | 3.190 | 0.420 | 9.73333333333333 | 5 | 0 | white |
99 | 5.200 | 0.2400 | 0.150 | 7.100 | 0.043 | 32.00 | 134.00 | 0.99378 | 3.240 | 0.480 | 9.9 | 6 | 0 | white |
100 | 5.200 | 0.2400 | 0.450 | 3.800 | 0.027 | 21.00 | 128.00 | 0.992 | 3.550 | 0.490 | 11.2 | 8 | 1 | white |
Rows: 1-100 of 6497 | Columns: 14
Let's create a linear regression to predict the quality of each wine.
from verticapy.learn.linear_model import LinearRegression
model = LinearRegression("public.LR_winequality")
model.fit("public.winequality", ["alcohol"], "quality")
======= details ======= predictor|coefficient|std_err |t_value |p_value ---------+-----------+--------+--------+-------- Intercept| 2.40527 | 0.08594|27.98758| 0.00000 alcohol | 0.32531 | 0.00814|39.97052| 0.00000 ============== regularization ============== type| lambda ----+-------- none| 1.00000 =========== call_string =========== linear_reg('public.LR_winequality', 'public.winequality', '"quality"', '"alcohol"' USING PARAMETERS optimizer='cgd', epsilon=0.0001, max_iterations=100, regularization='none', lambda=1, alpha=0.5) =============== Additional Info =============== Name |Value ------------------+----- iteration_count | 1 rejected_row_count| 0 accepted_row_count|6497
Fitting the model creates new model attributes, which make methods easier to use.
model.X
['"alcohol"']
model.y
'"quality"'
model.input_relation
'public.winequality'
model.test_relation
'public.winequality'
Since we didn't write a test relation when fitting the model, the model will use the training relation as the test relation.
Let's compute the R2 of the model.
model.score(method = "r2")
0.197418947221722
The 'score' method uses the 'y' attribute and the model prediction in the 'test_relation' to compute the accuracy of the model. You can change these attributes at any time to deploy the models on different columns.
Models have many useful attributes. For example, the 'coef_' attribute gives us the p-value of the model.
model.coef_
Abc predictorVarchar(65000) | 123 coefficientFloat | 123 std_errFloat | 123 t_valueFloat | 123 p_valueFloat | |
1 | Intercept | 2.40526883383781 | 0.0859405708614197 | 27.9875826949804 | 7.70442131066327e-163 |
2 | alcohol | 0.325312038053542 | 0.00813879966075955 | 39.9705179649529 | 1.49650934284e-312 |
You can view other attributes using the 'get_attr' method.
model.get_attr()
Abc attr_nameVarchar(128) | Abc Long varchar(32000000) | 123 #_of_rowsInteger | |
1 | details | 2 | |
2 | regularization | 1 | |
3 | iteration_count | 1 | |
4 | rejected_row_count | 1 | |
5 | accepted_row_count | 1 | |
6 | call_string | 1 |
Let's look at the SQL query for our model.
display(model.deploySQL())
PREDICT_LINEAR_REG("alcohol" USING PARAMETERS model_name = 'public.LR_winequality', match_by_pos = 'true')
The best way to evaluate this type of model is with the 'report' method.
model.report()
value | |
explained_variance | 0.197418947221787 |
max_error | 3.50420051331244 |
median_absolute_error | 0.495799486687561 |
mean_absolute_error | 0.618753626974322 |
mean_squared_error | 0.611933859491423 |
r2 | 0.197418947221722 |
You can add this prediction to your vDataFrame.
model.predict(winequality, name = "pred_quality")
123 fixed_acidityNumeric(6,3) | 123 volatile_acidityNumeric(7,4) | 123 citric_acidNumeric(6,3) | 123 residual_sugarNumeric(7,3) | 123 chloridesFloat | 123 free_sulfur_dioxideNumeric(7,2) | 123 total_sulfur_dioxideNumeric(7,2) | 123 densityFloat | 123 pHNumeric(6,3) | 123 sulphatesNumeric(6,3) | 123 alcoholFloat | 123 qualityInt | 123 goodInt | Abc colorVarchar(20) | 123 pred_qualityFloat | |
1 | 3.800 | 0.3100 | 0.020 | 11.100 | 0.036 | 20.00 | 114.00 | 0.99248 | 3.750 | 0.440 | 12.4 | 6 | 0 | white | 6.43913810570173 |
2 | 3.900 | 0.2250 | 0.400 | 4.200 | 0.03 | 29.00 | 118.00 | 0.989 | 3.570 | 0.360 | 12.8 | 8 | 1 | white | 6.56926292092315 |
3 | 4.200 | 0.1700 | 0.360 | 1.800 | 0.029 | 93.00 | 161.00 | 0.98999 | 3.650 | 0.890 | 12.0 | 7 | 1 | white | 6.30901329048031 |
4 | 4.200 | 0.2150 | 0.230 | 5.100 | 0.041 | 64.00 | 157.00 | 0.99688 | 3.420 | 0.440 | 8.0 | 3 | 0 | white | 5.00776513826615 |
5 | 4.400 | 0.3200 | 0.390 | 4.300 | 0.03 | 31.00 | 127.00 | 0.98904 | 3.460 | 0.360 | 12.8 | 8 | 1 | white | 6.56926292092315 |
6 | 4.400 | 0.4600 | 0.100 | 2.800 | 0.024 | 31.00 | 111.00 | 0.98816 | 3.480 | 0.340 | 13.1 | 6 | 0 | white | 6.66685653233921 |
7 | 4.400 | 0.5400 | 0.090 | 5.100 | 0.038 | 52.00 | 97.00 | 0.99022 | 3.410 | 0.400 | 12.2 | 7 | 1 | white | 6.37407569809102 |
8 | 4.500 | 0.1900 | 0.210 | 0.950 | 0.033 | 89.00 | 159.00 | 0.99332 | 3.340 | 0.420 | 8.0 | 5 | 0 | white | 5.00776513826615 |
9 | 4.600 | 0.4450 | 0.000 | 1.400 | 0.053 | 11.00 | 178.00 | 0.99426 | 3.790 | 0.550 | 10.2 | 5 | 0 | white | 5.72345162198394 |
10 | 4.600 | 0.5200 | 0.150 | 2.100 | 0.054 | 8.00 | 65.00 | 0.9934 | 3.900 | 0.560 | 13.1 | 4 | 0 | red | 6.66685653233921 |
11 | 4.700 | 0.1450 | 0.290 | 1.000 | 0.042 | 35.00 | 90.00 | 0.9908 | 3.760 | 0.490 | 11.3 | 6 | 0 | white | 6.08129486384284 |
12 | 4.700 | 0.3350 | 0.140 | 1.300 | 0.036 | 69.00 | 168.00 | 0.99212 | 3.470 | 0.460 | 10.5 | 5 | 0 | white | 5.8210452334 |
13 | 4.700 | 0.4550 | 0.180 | 1.900 | 0.036 | 33.00 | 106.00 | 0.98746 | 3.210 | 0.830 | 14.0 | 7 | 1 | white | 6.9596373665874 |
14 | 4.700 | 0.6000 | 0.170 | 2.300 | 0.058 | 17.00 | 106.00 | 0.9932 | 3.850 | 0.600 | 12.9 | 6 | 0 | red | 6.6017941247285 |
15 | 4.700 | 0.6700 | 0.090 | 1.000 | 0.02 | 5.00 | 9.00 | 0.98722 | 3.300 | 0.340 | 13.6 | 5 | 0 | white | 6.82951255136598 |
16 | 4.700 | 0.7850 | 0.000 | 3.400 | 0.036 | 23.00 | 134.00 | 0.98981 | 3.530 | 0.920 | 13.8 | 6 | 0 | white | 6.89457495897669 |
17 | 4.800 | 0.1300 | 0.320 | 1.200 | 0.042 | 40.00 | 98.00 | 0.9898 | 3.420 | 0.640 | 11.8 | 7 | 1 | white | 6.24395088286961 |
18 | 4.800 | 0.1700 | 0.280 | 2.900 | 0.03 | 22.00 | 111.00 | 0.9902 | 3.380 | 0.340 | 11.3 | 7 | 1 | white | 6.08129486384284 |
19 | 4.800 | 0.2100 | 0.210 | 10.200 | 0.037 | 17.00 | 112.00 | 0.99324 | 3.660 | 0.480 | 12.2 | 7 | 1 | white | 6.37407569809102 |
20 | 4.800 | 0.2250 | 0.380 | 1.200 | 0.074 | 47.00 | 130.00 | 0.99132 | 3.310 | 0.400 | 10.3 | 6 | 0 | white | 5.75598282578929 |
21 | 4.800 | 0.2600 | 0.230 | 10.600 | 0.034 | 23.00 | 111.00 | 0.99274 | 3.460 | 0.280 | 11.5 | 7 | 1 | white | 6.14635727145354 |
22 | 4.800 | 0.2900 | 0.230 | 1.100 | 0.044 | 38.00 | 180.00 | 0.98924 | 3.280 | 0.340 | 11.9 | 6 | 0 | white | 6.27648208667496 |
23 | 4.800 | 0.3300 | 0.000 | 6.500 | 0.028 | 34.00 | 163.00 | 0.9937 | 3.350 | 0.610 | 9.9 | 5 | 0 | white | 5.62585801056788 |
24 | 4.800 | 0.3400 | 0.000 | 6.500 | 0.028 | 33.00 | 163.00 | 0.9939 | 3.360 | 0.610 | 9.9 | 6 | 0 | white | 5.62585801056788 |
25 | 4.800 | 0.6500 | 0.120 | 1.100 | 0.013 | 4.00 | 10.00 | 0.99246 | 3.320 | 0.360 | 13.5 | 4 | 0 | white | 6.79698134756063 |
26 | 4.900 | 0.2350 | 0.270 | 11.750 | 0.03 | 34.00 | 118.00 | 0.9954 | 3.070 | 0.500 | 9.4 | 6 | 0 | white | 5.4632019915411 |
27 | 4.900 | 0.3300 | 0.310 | 1.200 | 0.016 | 39.00 | 150.00 | 0.98713 | 3.330 | 0.590 | 14.0 | 8 | 1 | white | 6.9596373665874 |
28 | 4.900 | 0.3350 | 0.140 | 1.300 | 0.036 | 69.00 | 168.00 | 0.99212 | 3.470 | 0.460 | 10.4666666666667 | 5 | 0 | white | 5.81020149879823 |
29 | 4.900 | 0.3350 | 0.140 | 1.300 | 0.036 | 69.00 | 168.00 | 0.99212 | 3.470 | 0.460 | 10.4666666666667 | 5 | 0 | white | 5.81020149879823 |
30 | 4.900 | 0.3450 | 0.340 | 1.000 | 0.068 | 32.00 | 143.00 | 0.99138 | 3.240 | 0.400 | 10.1 | 5 | 0 | white | 5.69092041817858 |
31 | 4.900 | 0.3450 | 0.340 | 1.000 | 0.068 | 32.00 | 143.00 | 0.99138 | 3.240 | 0.400 | 10.1 | 5 | 0 | white | 5.69092041817858 |
32 | 4.900 | 0.4200 | 0.000 | 2.100 | 0.048 | 16.00 | 42.00 | 0.99154 | 3.710 | 0.740 | 14.0 | 7 | 1 | red | 6.9596373665874 |
33 | 4.900 | 0.4700 | 0.170 | 1.900 | 0.035 | 60.00 | 148.00 | 0.98964 | 3.270 | 0.350 | 11.5 | 6 | 0 | white | 6.14635727145354 |
34 | 5.000 | 0.1700 | 0.560 | 1.500 | 0.026 | 24.00 | 115.00 | 0.9906 | 3.480 | 0.390 | 10.8 | 7 | 1 | white | 5.91863884481606 |
35 | 5.000 | 0.2000 | 0.400 | 1.900 | 0.015 | 20.00 | 98.00 | 0.9897 | 3.370 | 0.550 | 12.05 | 6 | 0 | white | 6.32527889238299 |
36 | 5.000 | 0.2350 | 0.270 | 11.750 | 0.03 | 34.00 | 118.00 | 0.9954 | 3.070 | 0.500 | 9.4 | 6 | 0 | white | 5.4632019915411 |
37 | 5.000 | 0.2400 | 0.190 | 5.000 | 0.043 | 17.00 | 101.00 | 0.99438 | 3.670 | 0.570 | 10.0 | 5 | 0 | white | 5.65838921437323 |
38 | 5.000 | 0.2400 | 0.210 | 2.200 | 0.039 | 31.00 | 100.00 | 0.99098 | 3.690 | 0.620 | 11.7 | 6 | 0 | white | 6.21141967906425 |
39 | 5.000 | 0.2400 | 0.340 | 1.100 | 0.034 | 49.00 | 158.00 | 0.98774 | 3.320 | 0.320 | 13.1 | 7 | 1 | white | 6.66685653233921 |
40 | 5.000 | 0.2550 | 0.220 | 2.700 | 0.043 | 46.00 | 153.00 | 0.99238 | 3.750 | 0.760 | 11.3 | 6 | 0 | white | 6.08129486384284 |
41 | 5.000 | 0.2700 | 0.320 | 4.500 | 0.032 | 58.00 | 178.00 | 0.98956 | 3.450 | 0.310 | 12.6 | 7 | 1 | white | 6.50420051331244 |
42 | 5.000 | 0.2700 | 0.320 | 4.500 | 0.032 | 58.00 | 178.00 | 0.98956 | 3.450 | 0.310 | 12.6 | 7 | 1 | white | 6.50420051331244 |
43 | 5.000 | 0.2700 | 0.400 | 1.200 | 0.076 | 42.00 | 124.00 | 0.99204 | 3.320 | 0.470 | 10.1 | 6 | 0 | white | 5.69092041817858 |
44 | 5.000 | 0.2900 | 0.540 | 5.700 | 0.035 | 54.00 | 155.00 | 0.98976 | 3.270 | 0.340 | 12.9 | 8 | 1 | white | 6.6017941247285 |
45 | 5.000 | 0.3000 | 0.330 | 3.700 | 0.03 | 54.00 | 173.00 | 0.9887 | 3.360 | 0.300 | 13.0 | 7 | 1 | white | 6.63432532853386 |
46 | 5.000 | 0.3100 | 0.000 | 6.400 | 0.046 | 43.00 | 166.00 | 0.994 | 3.300 | 0.630 | 9.9 | 6 | 0 | white | 5.62585801056788 |
47 | 5.000 | 0.3300 | 0.160 | 1.500 | 0.049 | 10.00 | 97.00 | 0.9917 | 3.480 | 0.440 | 10.7 | 6 | 0 | white | 5.88610764101071 |
48 | 5.000 | 0.3300 | 0.160 | 1.500 | 0.049 | 10.00 | 97.00 | 0.9917 | 3.480 | 0.440 | 10.7 | 6 | 0 | white | 5.88610764101071 |
49 | 5.000 | 0.3300 | 0.160 | 1.500 | 0.049 | 10.00 | 97.00 | 0.9917 | 3.480 | 0.440 | 10.7 | 6 | 0 | white | 5.88610764101071 |
50 | 5.000 | 0.3300 | 0.180 | 4.600 | 0.032 | 40.00 | 124.00 | 0.99114 | 3.180 | 0.400 | 11.0 | 6 | 0 | white | 5.98370125242677 |
51 | 5.000 | 0.3300 | 0.230 | 11.800 | 0.03 | 23.00 | 158.00 | 0.99322 | 3.410 | 0.640 | 11.8 | 6 | 0 | white | 6.24395088286961 |
52 | 5.000 | 0.3500 | 0.250 | 7.800 | 0.031 | 24.00 | 116.00 | 0.99241 | 3.390 | 0.400 | 11.3 | 6 | 0 | white | 6.08129486384284 |
53 | 5.000 | 0.3500 | 0.250 | 7.800 | 0.031 | 24.00 | 116.00 | 0.99241 | 3.390 | 0.400 | 11.3 | 6 | 0 | white | 6.08129486384284 |
54 | 5.000 | 0.3800 | 0.010 | 1.600 | 0.048 | 26.00 | 60.00 | 0.99084 | 3.700 | 0.750 | 14.0 | 6 | 0 | red | 6.9596373665874 |
55 | 5.000 | 0.4000 | 0.500 | 4.300 | 0.046 | 29.00 | 80.00 | 0.9902 | 3.490 | 0.660 | 13.6 | 6 | 0 | red | 6.82951255136598 |
56 | 5.000 | 0.4200 | 0.240 | 2.000 | 0.06 | 19.00 | 50.00 | 0.9917 | 3.720 | 0.740 | 14.0 | 8 | 1 | red | 6.9596373665874 |
57 | 5.000 | 0.4400 | 0.040 | 18.600 | 0.039 | 38.00 | 128.00 | 0.9985 | 3.370 | 0.570 | 10.2 | 6 | 0 | white | 5.72345162198394 |
58 | 5.000 | 0.4550 | 0.180 | 1.900 | 0.036 | 33.00 | 106.00 | 0.98746 | 3.210 | 0.830 | 14.0 | 7 | 1 | white | 6.9596373665874 |
59 | 5.000 | 0.5500 | 0.140 | 8.300 | 0.032 | 35.00 | 164.00 | 0.9918 | 3.530 | 0.510 | 12.5 | 8 | 1 | white | 6.47166930950709 |
60 | 5.000 | 0.6100 | 0.120 | 1.300 | 0.009 | 65.00 | 100.00 | 0.9874 | 3.260 | 0.370 | 13.5 | 5 | 0 | white | 6.79698134756063 |
61 | 5.000 | 0.7400 | 0.000 | 1.200 | 0.041 | 16.00 | 46.00 | 0.99258 | 4.010 | 0.590 | 12.5 | 6 | 0 | red | 6.47166930950709 |
62 | 5.000 | 1.0200 | 0.040 | 1.400 | 0.045 | 41.00 | 85.00 | 0.9938 | 3.750 | 0.480 | 10.5 | 4 | 0 | red | 5.8210452334 |
63 | 5.000 | 1.0400 | 0.240 | 1.600 | 0.05 | 32.00 | 96.00 | 0.9934 | 3.740 | 0.620 | 11.5 | 5 | 0 | red | 6.14635727145354 |
64 | 5.100 | 0.1100 | 0.320 | 1.600 | 0.028 | 12.00 | 90.00 | 0.99008 | 3.570 | 0.520 | 12.2 | 6 | 0 | white | 6.37407569809102 |
65 | 5.100 | 0.1400 | 0.250 | 0.700 | 0.039 | 15.00 | 89.00 | 0.9919 | 3.220 | 0.430 | 9.2 | 6 | 0 | white | 5.3981395839304 |
66 | 5.100 | 0.1650 | 0.220 | 5.700 | 0.047 | 42.00 | 146.00 | 0.9934 | 3.180 | 0.550 | 9.9 | 6 | 0 | white | 5.62585801056788 |
67 | 5.100 | 0.2100 | 0.280 | 1.400 | 0.047 | 48.00 | 148.00 | 0.99168 | 3.500 | 0.490 | 10.4 | 5 | 0 | white | 5.78851402959465 |
68 | 5.100 | 0.2300 | 0.180 | 1.000 | 0.053 | 13.00 | 99.00 | 0.98956 | 3.220 | 0.390 | 11.5 | 5 | 0 | white | 6.14635727145354 |
69 | 5.100 | 0.2500 | 0.360 | 1.300 | 0.035 | 40.00 | 78.00 | 0.9891 | 3.230 | 0.640 | 12.1 | 7 | 1 | white | 6.34154449428567 |
70 | 5.100 | 0.2600 | 0.330 | 1.100 | 0.027 | 46.00 | 113.00 | 0.98946 | 3.350 | 0.430 | 11.4 | 7 | 1 | white | 6.11382606764819 |
71 | 5.100 | 0.2600 | 0.340 | 6.400 | 0.034 | 26.00 | 99.00 | 0.99449 | 3.230 | 0.410 | 9.2 | 6 | 0 | white | 5.3981395839304 |
72 | 5.100 | 0.2900 | 0.280 | 8.300 | 0.026 | 27.00 | 107.00 | 0.99308 | 3.360 | 0.370 | 11.0 | 6 | 0 | white | 5.98370125242677 |
73 | 5.100 | 0.2900 | 0.280 | 8.300 | 0.026 | 27.00 | 107.00 | 0.99308 | 3.360 | 0.370 | 11.0 | 6 | 0 | white | 5.98370125242677 |
74 | 5.100 | 0.3000 | 0.300 | 2.300 | 0.048 | 40.00 | 150.00 | 0.98944 | 3.290 | 0.460 | 12.2 | 6 | 0 | white | 6.37407569809102 |
75 | 5.100 | 0.3050 | 0.130 | 1.750 | 0.036 | 17.00 | 73.00 | 0.99 | 3.400 | 0.510 | 12.3333333333333 | 5 | 0 | white | 6.41745063649815 |
76 | 5.100 | 0.3100 | 0.300 | 0.900 | 0.037 | 28.00 | 152.00 | 0.992 | 3.540 | 0.560 | 10.1 | 6 | 0 | white | 5.69092041817858 |
77 | 5.100 | 0.3300 |