PCA

In [ ]:
PCA(name: str,
    n_components: int = 0,
    scale: bool = False, 
    method: str = "lapack")

Creates a PCA (Principal Component Analysis) object using the Vertica PCA function.

Parameters

Name Type Optional Description
name
str
Name of the model to be stored in the database.
n_components
int
The number of components to keep in the model. If this value is not provided, all components are kept. The maximum number of components is the number of non-zero singular values returned by the internal call to SVD. This number is less than or equal to SVD (number of columns, number of rows).
scale
bool
A Boolean value that specifies whether to standardize the columns during the preparation step.
method
str
The method to use to calculate PCA.
  • method : Lapack definition.

Attributes

After the object creation, all the parameters become attributes. The model will also create extra attributes when fitting the model:

Name Type Description
components_
tablesample
The principal components.
explained_variance_
tablesample
The singular values explained variance.
mean_
tablesample
The information about columns from the input relation used for creating the PCA model.
input_relation
str
Training relation.
X
list
List of the predictors.

Methods

Name Description
deploySQL Returns the SQL code needed to deploy the model.
deployInverseSQL Returns the SQL code needed to deploy the inverse model (PCA ** -1).
drop Drops the model from the Vertica DB.
fit Trains the model.
get_attr Returns the model attribute.
get_params Returns the model Parameters.
inverse_transform Applies the inverse model on a vDataFrame.
plot Draws a decomposition scatter plot.
plot_circle Draws a decomposition circle.
plot_scree Draws a decomposition scree plot.
score Returns the decomposition Score on a dataset for each trasformed column.
set_params Sets the parameters of the model.
to_memmodel Converts a specified Vertica model to a memModel model.
to_python Returns the Python code needed to deploy the model without using built-in Vertica functions.
to_sql Returns the SQL code needed to deploy the model without using Vertica built-in functions.
transform Applies the model on a vDataFrame.

Example

In [36]:
from verticapy.learn.decomposition import PCA
model = PCA(name = "public.pca_iris")
display(model)
<PCA>