Model.regression_report / report¶
In [ ]:
Model.report(method: str = "metrics")
Computes a regression report using multiple metrics to evaluate the model (r2, mse, max error...).
Parameters¶
Name | Type | Optional | Description |
---|---|---|---|
method | str | ✓ | The method to use to compute the score.
|
Returns¶
tablesample : An object containing the result. For more information, see utilities.tablesample.
Example¶
In [7]:
from verticapy.learn.ensemble import RandomForestRegressor
model = RandomForestRegressor(name = "public.RF_winequality",
n_estimators = 20,
max_features = "auto",
max_leaf_nodes = 32,
sample = 0.7,
max_depth = 3,
min_samples_leaf = 5,
min_info_gain = 0.0,
nbins = 32)
model.drop()
model.fit("public.winequality", ["alcohol", "fixed_acidity"], "quality")
# metrics
model.report()
Out[7]:
In [9]:
# ANOVA
model.report("anova")
Out[9]:
In [10]:
# details
model.report("details")
Out[10]: