Model.confusion_matrix

In [ ]:
Model.confusion_matrix(pos_label = None, 
                       cutoff: float = -1)

Computes the model confusion matrix.

Parameters

Name Type Optional Description
pos_label
int / float / str
Label to consider as positive. All the other classes will be merged and considered as negative in case of multi classification.
cutoff
float
Cutoff for which the tested category will be accepted as prediction. In case of multiclass classification, if the cutoff is not between 0 and 1, the entire confusion matrix will be drawn.

Returns

tablesample : An object containing the result. For more information, see utilities.tablesample.

Example

In [45]:
# Multiclass Classification
from verticapy.learn.ensemble import RandomForestClassifier
model = RandomForestClassifier(name = "public.RF_iris",
                               n_estimators = 20,
                               max_features = "auto",
                               max_leaf_nodes = 32, 
                               sample = 0.7,
                               max_depth = 3,
                               min_samples_leaf = 5,
                               min_info_gain = 0.0,
                               nbins = 32)
model.fit("public.iris", ["PetalLengthCm", "PetalWidthCm"], "Species")
# Global Confusion Matrix
model.confusion_matrix()
Iris-setosaIris-versicolorIris-virginica
Iris-setosa5000
Iris-versicolor0491
Iris-virginica0545
Out[45]:

In [46]:
# Confusion matrix with Iris-versicolor as 
# the positive class
model.confusion_matrix(pos_label = "Iris-versicolor",
                       cutoff = 0.33)
Non-Iris-versicolorIris-versicolor
Non-Iris-versicolor937
Iris-versicolor050
Out[46]: