Expand Menu
-
Home / Documentation / Delphi / Automl / Fit / Index
Model.fit¶
In [ ]:
Model.fit(input_relation: (str, vDataFrame),
X: list,
y: str,)
Example¶
In [1]:
from verticapy.learn.delphi import AutoML
model = AutoML("titanic_autoML", stepwise = False)
model.fit("public.titanic", y = "survived")
Starting AutoML
Testing Model - LogisticRegression
Model: LogisticRegression; Parameters: {'tol': 1e-06, 'max_iter': 100, 'penalty': 'none', 'solver': 'bfgs'}; Test_score: 0.058747133750518495; Train_score: 0.030520459056835366; Time: 10.177567720413208; Model: LogisticRegression; Parameters: {'tol': 1e-06, 'max_iter': 100, 'penalty': 'l1', 'solver': 'cgd', 'C': 1.0}; Test_score: 0.301029995663981; Train_score: 0.301029995663981; Time: 0.5177769660949707; Model: LogisticRegression; Parameters: {'tol': 1e-06, 'max_iter': 100, 'penalty': 'l2', 'solver': 'bfgs', 'C': 1.0}; Test_score: 0.03467372215888777; Train_score: 0.040084656014095; Time: 8.65127698580424; Model: LogisticRegression; Parameters: {'tol': 1e-06, 'max_iter': 100, 'penalty': 'enet', 'solver': 'cgd', 'C': 1.0, 'l1_ratio': 0.5}; Test_score: 0.301029995663981; Train_score: 0.301029995663981; Time: 0.4305996100107829; Grid Search Selected Model LogisticRegression; Parameters: {'solver': 'bfgs', 'penalty': 'l2', 'max_iter': 100, 'C': 1.0, 'tol': 1e-06}; Test_score: 0.03467372215888777; Train_score: 0.040084656014095; Time: 8.65127698580424; Testing Model - RandomForestClassifier
Model: RandomForestClassifier; Parameters: {'max_features': 'max', 'max_leaf_nodes': 32, 'max_depth': 5, 'min_samples_leaf': 1, 'min_info_gain': 0.0, 'nbins': 32}; Test_score: 0.6912644770548286; Train_score: 0.018363257686033533; Time: 0.5188576380411783; Model: RandomForestClassifier; Parameters: {'max_features': 'auto', 'max_leaf_nodes': 64, 'max_depth': 4, 'min_samples_leaf': 2, 'min_info_gain': 0.0, 'nbins': 32}; Test_score: 0.04780020077573837; Train_score: 0.03799784570322354; Time: 0.6012808481852213; Model: RandomForestClassifier; Parameters: {'max_features': 'auto', 'max_leaf_nodes': 32, 'max_depth': 4, 'min_samples_leaf': 2, 'min_info_gain': 0.0, 'nbins': 32}; Test_score: 0.1121156175279119; Train_score: 0.036462521024479964; Time: 0.6061913967132568; Model: RandomForestClassifier; Parameters: {'max_features': 'max', 'max_leaf_nodes': 64, 'max_depth': 4, 'min_samples_leaf': 2, 'min_info_gain': 0.0, 'nbins': 32}; Test_score: 0.32044589382468697; Train_score: 0.026115669482827335; Time: 0.5158038934071859; Model: RandomForestClassifier; Parameters: {'max_features': 'auto', 'max_leaf_nodes': 1000, 'max_depth': 6, 'min_samples_leaf': 2, 'min_info_gain': 0.0, 'nbins': 32}; Test_score: 0.10587022372781703; Train_score: 0.03147628534489167; Time: 0.6188173294067383; Grid Search Selected Model RandomForestClassifier; Parameters: {'n_estimators': 10, 'max_features': 'auto', 'max_leaf_nodes': 64, 'sample': 0.632, 'max_depth': 4, 'min_samples_leaf': 2, 'min_info_gain': 0.0, 'nbins': 32}; Test_score: 0.04780020077573837; Train_score: 0.03799784570322354; Time: 0.6012808481852213; Testing Model - NaiveBayes
Model: NaiveBayes; Parameters: {'alpha': 0.01}; Test_score: 49.545500338212236; Train_score: 48.0569530726675; Time: 0.32554197311401367; Model: NaiveBayes; Parameters: {'alpha': 1.0}; Test_score: 48.6479075941986; Train_score: 48.543435159082904; Time: 0.3659666379292806; Model: NaiveBayes; Parameters: {'alpha': 10.0}; Test_score: 48.274806620868695; Train_score: 48.7333732981366; Time: 0.36309019724527997; Grid Search Selected Model NaiveBayes; Parameters: {'alpha': 10.0, 'nbtype': 'auto'}; Test_score: 48.274806620868695; Train_score: 48.7333732981366; Time: 0.36309019724527997; Final Model LogisticRegression; Best_Parameters: {'solver': 'bfgs', 'penalty': 'l2', 'max_iter': 100, 'C': 1.0, 'tol': 1e-06}; Best_Test_score: 0.03467372215888777; Train_score: 0.040084656014095; Time: 8.65127698580424;
Out[1]:
model_type | avg_score | avg_train_score | avg_time | score_std | score_train_std | |||
1 | LogisticRegression | 0.03467372215888777 | 0.040084656014095 | 8.65127698580424 | 0.0027533715028225498 | 0.0017338790478024836 | ||
2 | RandomForestClassifier | 0.04780020077573837 | 0.03799784570322354 | 0.6012808481852213 | 0.007854641111027778 | 0.006098402782038309 | ||
3 | LogisticRegression | 0.058747133750518495 | 0.030520459056835366 | 10.177567720413208 | 0.049502886401589015 | 0.007393253247850581 | ||
4 | RandomForestClassifier | 0.10587022372781703 | 0.03147628534489167 | 0.6188173294067383 | 0.11364772306051597 | 0.005364074296552674 | ||
5 | RandomForestClassifier | 0.1121156175279119 | 0.036462521024479964 | 0.6061913967132568 | 0.13038154999087198 | 0.008716486006951588 | ||
6 | LogisticRegression | 0.301029995663981 | 0.301029995663981 | 0.5177769660949707 | 0.0 | 0.0 | ||
7 | LogisticRegression | 0.301029995663981 | 0.301029995663981 | 0.4305996100107829 | 0.0 | 0.0 | ||
8 | RandomForestClassifier | 0.32044589382468697 | 0.026115669482827335 | 0.5158038934071859 | 0.3207862599458925 | 0.0026885404517372454 | ||
9 | RandomForestClassifier | 0.6912644770548286 | 0.018363257686033533 | 0.5188576380411783 | 0.36540898419926204 | 0.0023180986540416245 | ||
10 | NaiveBayes | 48.274806620868695 | 48.7333732981366 | 0.36309019724527997 | 1.2913814331123625 | 0.6408280844475029 | ||
11 | NaiveBayes | 48.6479075941986 | 48.543435159082904 | 0.3659666379292806 | 1.828739911336018 | 0.87773409521784 | ||
12 | NaiveBayes | 49.545500338212236 | 48.0569530726675 | 0.32554197311401367 | 1.050975009868308 | 0.5687428669096175 |
Rows: 1-12 | Columns: 8
(c) Copyright [2020-2023] OpenText